BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23905491)

  • 1. Indomethacin nanoparticles for applications in liquid ocular formulations.
    Andonova VY; Georgiev GS; Georgieva VT; Petrova NL; Kasarova M
    Folia Med (Plovdiv); 2013; 55(1):76-82. PubMed ID: 23905491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and study of poly(vinyl acetate) and poly(styrene) nanosized latex with indometacin.
    Andonova V; Georgiev G; Toncheva V; Kassarova M
    Pharmazie; 2012 Jul; 67(7):601-4. PubMed ID: 22888516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indomethacin-loaded polymer nanocarriers based on poly(2-hydroxyethyl methacrylate-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane): preparation, in vitro and in vivo evaluation.
    Nita LE; Chiriac AP; Nistor MT; Tartau L
    J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):1121-33. PubMed ID: 22447566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues.
    Balguri SP; Adelli GR; Majumdar S
    Eur J Pharm Biopharm; 2016 Dec; 109():224-235. PubMed ID: 27793755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hydrophobe on the release behavior of vinyl acetate miniemulsion polymerization.
    Park SJ; Kim KS
    Colloids Surf B Biointerfaces; 2005 Nov; 46(1):52-6. PubMed ID: 16214307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers.
    Calvo P; Vila-Jato JL; Alonso MJ
    J Pharm Sci; 1996 May; 85(5):530-6. PubMed ID: 8742946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan based nanocarriers for indomethacin ocular delivery.
    Badawi AA; El-Laithy HM; El Qidra RK; El Mofty H; El dally M
    Arch Pharm Res; 2008 Aug; 31(8):1040-9. PubMed ID: 18787795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation and characterizations of delayed release multi particulates system of indomethacin: optimization by response surface methodology.
    Nandy BC; Mazumder B
    Curr Drug Deliv; 2014; 11(1):72-86. PubMed ID: 24783236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ε-benzyloxycarbonyl-L-lysine)-grafted branched polyethylenimine as efficient nanocarriers for indomethacin with enhanced oral bioavailability and anti-inflammatory efficacy.
    Lu C; Li X; Xia W; Lu S; Luo H; Ye D; Zhang Y; Liu D
    Acta Biomater; 2017 Feb; 49():434-443. PubMed ID: 27867110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indomethacin-loaded poly(butylcyanoacrylate) nanoparticles: preparation and characterization.
    Liu H; Chen J
    PDA J Pharm Sci Technol; 2009; 63(3):207-16. PubMed ID: 20069793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indomethacin uptake into poly(2-hydroxyethyl methacrylate-co-3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5]-undecane) network: In vitro and in vivo controlled release study.
    Nita LE; Chiriac AP; Nistor MT; Tartau L
    Int J Pharm; 2012 Apr; 426(1-2):90-99. PubMed ID: 22301428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan grafted-poly(ethylene glycol) methacrylate nanoparticles as carrier for controlled release of bevacizumab.
    Savin CL; Popa M; Delaite C; Costuleanu M; Costin D; Peptu CA
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():843-860. PubMed ID: 30813091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poorly water-soluble drug nanoparticles via an emulsion-freeze-drying approach.
    Grant N; Zhang H
    J Colloid Interface Sci; 2011 Apr; 356(2):573-8. PubMed ID: 21315369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH liposomes: control of the drug loading/release by modulation of the nanocarriers' components.
    Pippa N; Meristoudi A; Pispas S; Demetzos C
    Int J Pharm; 2015 May; 485(1-2):374-82. PubMed ID: 25776453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning drug loading and release properties of diatom silica microparticles by surface modifications.
    Bariana M; Aw MS; Kurkuri M; Losic D
    Int J Pharm; 2013 Feb; 443(1-2):230-41. PubMed ID: 23287775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of pharmaceutical formulations: ATR-FTIR spectroscopic imaging to study drug-carrier interactions.
    Ewing AV; Biggart GD; Hale CR; Clarke GS; Kazarian SG
    Int J Pharm; 2015 Nov; 495(1):112-121. PubMed ID: 26319636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro release study of indomethacin from nanoparticles based on methyl methacrylate/glycidyl methacrylate copolymers.
    Nita LE; Chiriac AP; Nistor M
    J Mater Sci Mater Med; 2010 Dec; 21(12):3129-40. PubMed ID: 21046203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman and thermal analysis of indomethacin/PVP solid dispersion enteric microparticles.
    Fini A; Cavallari C; Ospitali F
    Eur J Pharm Biopharm; 2008 Sep; 70(1):409-20. PubMed ID: 18621516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indomethacin functionalised poly(glycerol adipate) nanospheres as promising candidates for modified drug release.
    Wersig T; Krombholz R; Janich C; Meister A; Kressler J; Mäder K
    Eur J Pharm Sci; 2018 Oct; 123():350-361. PubMed ID: 30063978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melt-Cast Noninvasive Ocular Inserts for Posterior Segment Drug Delivery.
    Balguri SP; Adelli GR; Tatke A; Janga KY; Bhagav P; Majumdar S
    J Pharm Sci; 2017 Dec; 106(12):3515-3523. PubMed ID: 28778424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.