These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
462 related articles for article (PubMed ID: 23905722)
1. Development and evaluation of cross-linked collagen-hydroxyapatite scaffolds for tissue engineering. Panda NN; Jonnalagadda S; Pramanik K J Biomater Sci Polym Ed; 2013; 24(18):2031-44. PubMed ID: 23905722 [TBL] [Abstract][Full Text] [Related]
2. A collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite as a scaffold for cartilage tissue engineering. Ohyabu Y; Adegawa T; Yoshioka T; Ikoma T; Shinozaki K; Uemura T; Tanaka J J Biomater Sci Polym Ed; 2009; 20(13):1861-74. PubMed ID: 19793444 [TBL] [Abstract][Full Text] [Related]
3. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338 [TBL] [Abstract][Full Text] [Related]
4. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects. Qi X; Huang Y; Han D; Zhang J; Cao J; Jin X; Huang J; Li X; Wang T Biomed Mater; 2016 Mar; 11(2):025005. PubMed ID: 26964015 [TBL] [Abstract][Full Text] [Related]
6. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. Pallela R; Venkatesan J; Janapala VR; Kim SK J Biomed Mater Res A; 2012 Feb; 100(2):486-95. PubMed ID: 22125128 [TBL] [Abstract][Full Text] [Related]
7. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777 [TBL] [Abstract][Full Text] [Related]
9. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. He X; Fan X; Feng W; Chen Y; Guo T; Wang F; Liu J; Tang K Int J Biol Macromol; 2018 Aug; 115():385-392. PubMed ID: 29673955 [TBL] [Abstract][Full Text] [Related]
10. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. Xie L; Yu H; Yang W; Zhu Z; Yue L J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015 [TBL] [Abstract][Full Text] [Related]
11. Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Venkatesan J; Pallela R; Bhatnagar I; Kim SK Int J Biol Macromol; 2012 Dec; 51(5):1033-42. PubMed ID: 22947451 [TBL] [Abstract][Full Text] [Related]
12. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379 [TBL] [Abstract][Full Text] [Related]
13. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Ma X; He Z; Han F; Zhong Z; Chen L; Li B Colloids Surf B Biointerfaces; 2016 Jul; 143():81-87. PubMed ID: 26998869 [TBL] [Abstract][Full Text] [Related]
14. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application. Gostynska N; Shankar Krishnakumar G; Campodoni E; Panseri S; Montesi M; Sprio S; Kon E; Marcacci M; Tampieri A; Sandri M Biomed Mater; 2017 Aug; 12(5):055002. PubMed ID: 28573980 [TBL] [Abstract][Full Text] [Related]
15. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878 [TBL] [Abstract][Full Text] [Related]
16. Freeze dried cross linking free biodegradable composites with microstructures for tissue engineering and drug delivery application. Joshy MI; Elayaraja K; Sakthivel N; Chandra VS; Shanthini GM; Kalkura SN Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):466-74. PubMed ID: 25428097 [TBL] [Abstract][Full Text] [Related]
17. Comparison of two proanthocyanidin cross-linked recombinant human collagen-peptide (RHC) - chitosan scaffolds. Zhang J; Deng A; Zhou A; Yang Y; Gao L; Zhong Z; Yang S J Biomater Sci Polym Ed; 2015; 26(10):585-99. PubMed ID: 26053645 [TBL] [Abstract][Full Text] [Related]
18. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. An SH; Matsumoto T; Miyajima H; Nakahira A; Kim KH; Imazato S Dent Mater; 2012 Dec; 28(12):1221-31. PubMed ID: 23018082 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263 [TBL] [Abstract][Full Text] [Related]
20. A BMSCs-laden quercetin/duck's feet collagen/hydroxyapatite sponge for enhanced bone regeneration. Song JE; Tian J; Kook YJ; Thangavelu M; Choi JH; Khang G J Biomed Mater Res A; 2020 Mar; 108(3):784-794. PubMed ID: 31794132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]