BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23905754)

  • 1. In vitro and cellular self-assembly of a Zn-binding protein cryptand via templated disulfide bonds.
    Medina-Morales A; Perez A; Brodin JD; Tezcan FA
    J Am Chem Soc; 2013 Aug; 135(32):12013-22. PubMed ID: 23905754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the Structural and Energetic Basis of Allostery in a De Novo Designed Metalloprotein Assembly.
    Churchfield LA; Alberstein RG; Williamson LM; Tezcan FA
    J Am Chem Soc; 2018 Aug; 140(31):10043-10053. PubMed ID: 29996654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient folding of multi-disulfide proteins in superoxidizing Escherichia coli cytoplasm.
    Zhang W; Zheng W; Mao M; Yang Y
    Biotechnol Bioeng; 2014 Dec; 111(12):2520-7. PubMed ID: 24917025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A medium-firm drug-candidate library of cryptand-like structures on T7 phage: design and selection of a strong binder for Hsp90.
    Mochizuki K; Matsukura L; Ito Y; Miyashita N; Taki M
    Org Biomol Chem; 2021 Jan; 19(1):146-150. PubMed ID: 33095213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of Supramolecular Polymers with Different Topologies by Orthogonal Self-Assembly of Cryptand-Paraquat Recognition and Metal Coordination.
    Wang K; Shao YG; Yan FZ; Zhang Z; Li S
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33670156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu/Zn incorporation during purification of soluble human EC-SOD from E. coli stabilizes proper disulfide bond formation.
    Bae JY; Koo BK; Ryu HB; Song JA; Nguyen MT; Vu TT; Son YJ; Lee HK; Choe H
    Appl Biochem Biotechnol; 2013 Mar; 169(5):1633-47. PubMed ID: 23329142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo.
    Maskos K; Huber-Wunderlich M; Glockshuber R
    J Mol Biol; 2003 Jan; 325(3):495-513. PubMed ID: 12498799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo Design of an Allosteric Metalloprotein Assembly with Strained Disulfide Bonds.
    Churchfield LA; Medina-Morales A; Brodin JD; Perez A; Tezcan FA
    J Am Chem Soc; 2016 Oct; 138(40):13163-13166. PubMed ID: 27649076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD.
    Rozhkova A; Stirnimann CU; Frei P; Grauschopf U; Brunisholz R; Grütter MG; Capitani G; Glockshuber R
    EMBO J; 2004 Apr; 23(8):1709-19. PubMed ID: 15057279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of [3]catenanes and a [4]molecular necklace based on a cryptand/paraquat recognition motif.
    Ye Y; Wang SP; Zhu B; Cook TR; Wu J; Li S; Stang PJ
    Org Lett; 2015 Jun; 17(11):2804-7. PubMed ID: 25996900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered pathways for correct disulfide bond oxidation.
    Ren G; Bardwell JC
    Antioxid Redox Signal; 2011 Jun; 14(12):2399-412. PubMed ID: 21250836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidatively stable, aqueous europium(II) complexes through steric and electronic manipulation of cryptand coordination chemistry.
    Gamage ND; Mei Y; Garcia J; Allen MJ
    Angew Chem Int Ed Engl; 2010 Nov; 49(47):8923-5. PubMed ID: 20927788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disulfide bond formation system in Escherichia coli.
    Inaba K
    J Biochem; 2009 Nov; 146(5):591-7. PubMed ID: 19567379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress control for a well-structured life.
    Goldstone DC; Baker EN
    J Biol Chem; 2018 Apr; 293(16):5806-5807. PubMed ID: 29678889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo-β-lactamases.
    Song WJ; Yu J; Tezcan FA
    J Am Chem Soc; 2017 Nov; 139(46):16772-16779. PubMed ID: 28992705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of zinc(II) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(II) accelerates exchange in higher dielectric environments.
    Kurian R; Bruce MR; Bruce AE; Amar FG
    Metallomics; 2015 Aug; 7(8):1265-73. PubMed ID: 26058002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA.
    Bushweller JH
    J Mol Biol; 2020 Aug; 432(18):5091-5103. PubMed ID: 32305461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation state-dependent protein-protein interactions in disulfide cascades.
    Mavridou DA; Saridakis E; Kritsiligkou P; Goddard AD; Stevens JM; Ferguson SJ; Redfield C
    J Biol Chem; 2011 Jul; 286(28):24943-56. PubMed ID: 21543317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on disulfide bond formation protein A in Escherichia coli].
    Luo M; Guan YX; Yao SJ
    Sheng Wu Gong Cheng Xue Bao; 2007 Jan; 23(1):7-15. PubMed ID: 17366881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.