These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23906003)

  • 1. Physical inactivity and muscle oxidative capacity in humans.
    Gram M; Dahl R; Dela F
    Eur J Sport Sci; 2014; 14(4):376-83. PubMed ID: 23906003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men.
    Gram M; Vigelsø A; Yokota T; Hansen CN; Helge JW; Hey-Mogensen M; Dela F
    Exp Gerontol; 2014 Oct; 58():269-78. PubMed ID: 25193555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression profiling following local muscle inactivity in humans provides new perspective on diabetes-related genes.
    Timmons JA; Norrbom J; Schéele C; Thonberg H; Wahlestedt C; Tesch P
    Genomics; 2006 Jan; 87(1):165-72. PubMed ID: 16326070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Metabolic fitness: physical activity and health].
    Saltin B; Pilegaard H
    Ugeskr Laeger; 2002 Apr; 164(16):2156-62. PubMed ID: 11989061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of weight loss and exercise in correcting skeletal muscle mitochondrial abnormalities in obesity, diabetes and aging.
    Toledo FG; Goodpaster BH
    Mol Cell Endocrinol; 2013 Oct; 379(1-2):30-4. PubMed ID: 23792186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes.
    Jacobs RA; Lundby C
    J Appl Physiol (1985); 2013 Feb; 114(3):344-50. PubMed ID: 23221957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo mitochondrial function in aging skeletal muscle: capacity, flux, and patterns of use.
    Kent JA; Fitzgerald LF
    J Appl Physiol (1985); 2016 Oct; 121(4):996-1003. PubMed ID: 27539499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans.
    Rose AJ; Frøsig C; Kiens B; Wojtaszewski JF; Richter EA
    J Physiol; 2007 Sep; 583(Pt 2):785-95. PubMed ID: 17627985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of skeletal muscle mitochondria: structure and function.
    Hoppeler H; Fluck M
    Med Sci Sports Exerc; 2003 Jan; 35(1):95-104. PubMed ID: 12544642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of genes involved in fatty acid transport and insulin signaling is altered by physical inactivity and exercise training in human skeletal muscle.
    Lammers G; Poelkens F; van Duijnhoven NT; Pardoel EM; Hoenderop JG; Thijssen DH; Hopman MT
    Am J Physiol Endocrinol Metab; 2012 Nov; 303(10):E1245-51. PubMed ID: 23011062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.
    Rivera-Brown AM; Frontera WR
    PM R; 2012 Nov; 4(11):797-804. PubMed ID: 23174541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status.
    Tonkonogi M; Sahlin K
    Acta Physiol Scand; 1997 Nov; 161(3):345-53. PubMed ID: 9401587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content.
    Toledo FG; Menshikova EV; Azuma K; Radiková Z; Kelley CA; Ritov VB; Kelley DE
    Diabetes; 2008 Apr; 57(4):987-94. PubMed ID: 18252894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex vivo measures of muscle mitochondrial capacity reveal quantitative limits of oxygen delivery by the circulation during exercise.
    Boushel R; Saltin B
    Int J Biochem Cell Biol; 2013 Jan; 45(1):68-75. PubMed ID: 23032701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of T3 on metabolic response and oxidative stress in skeletal muscle from sedentary and trained rats.
    Venditti P; Bari A; Di Stefano L; Di Meo S
    Free Radic Biol Med; 2009 Feb; 46(3):360-6. PubMed ID: 19022372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease.
    Hood DA; Uguccioni G; Vainshtein A; D'souza D
    Compr Physiol; 2011 Jul; 1(3):1119-34. PubMed ID: 23733637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From physical inactivity to immobilization: Dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy.
    Pierre N; Appriou Z; Gratas-Delamarche A; Derbré F
    Free Radic Biol Med; 2016 Sep; 98():197-207. PubMed ID: 26744239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.