These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23906368)

  • 1. Double electron-electron resonance probes Ca²⁺-induced conformational changes and dimerization of recoverin.
    Myers WK; Xu X; Li C; Lagerstedt JO; Budamagunta MS; Voss JC; Britt RD; Ames JB
    Biochemistry; 2013 Aug; 52(34):5800-8. PubMed ID: 23906368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational dynamics of recoverin's Ca2+-myristoyl switch probed by 15N NMR relaxation dispersion and chemical shift analysis.
    Xu X; Ishima R; Ames JB
    Proteins; 2011 Jun; 79(6):1910-22. PubMed ID: 21465563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin.
    Ames JB; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Dec; 270(52):30909-13. PubMed ID: 8537345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin.
    Ames JB; Levay K; Wingard JN; Lusin JD; Slepak VZ
    J Biol Chem; 2006 Dec; 281(48):37237-45. PubMed ID: 17020884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers.
    Valentine KG; Mesleh MF; Opella SJ; Ikura M; Ames JB
    Biochemistry; 2003 Jun; 42(21):6333-40. PubMed ID: 12767213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel approaches to probe the binding of recoverin to membranes.
    Potvin-Fournier K; Valois-Paillard G; Gagnon MC; Lefèvre T; Audet P; Cantin L; Paquin JF; Salesse C; Auger M
    Eur Biophys J; 2018 Sep; 47(6):679-691. PubMed ID: 29691610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
    Ames JB; Hamasaki N; Molchanova T
    Biochemistry; 2002 May; 41(18):5776-87. PubMed ID: 11980481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-dependent conformational changes in the neuronal Ca2+-sensor recoverin probed by the fluorescent dye Alexa647.
    Gensch T; Komolov KE; Senin II; Philippov PP; Koch KW
    Proteins; 2007 Feb; 66(2):492-9. PubMed ID: 17078090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-dependent solvation of the myristoyl group of recoverin.
    Hughes RE; Brzovic PS; Klevit RE; Hurley JB
    Biochemistry; 1995 Sep; 34(36):11410-6. PubMed ID: 7547868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1.
    Lim S; Dizhoor AM; Ames JB
    Front Mol Neurosci; 2014; 7():19. PubMed ID: 24672427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae.
    Ames JB; Hendricks KB; Strahl T; Huttner IG; Hamasaki N; Thorner J
    Biochemistry; 2000 Oct; 39(40):12149-61. PubMed ID: 11015193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Biochemistry; 1994 Sep; 33(35):10743-53. PubMed ID: 8075075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization of Neuronal Calcium Sensor Proteins.
    Ames JB
    Front Mol Neurosci; 2018; 11():397. PubMed ID: 30450035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers.
    Desmeules P; Penney SE; Desbat B; Salesse C
    Biophys J; 2007 Sep; 93(6):2069-82. PubMed ID: 17526567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Membrane and Biological Target on the Structural and Allosteric Properties of Recoverin: A Computational Approach.
    Borsatto A; Marino V; Abrusci G; Lattanzi G; Dell'Orco D
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31658639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association.
    Permyakov SE; Zernii EY; Knyazeva EL; Denesyuk AI; Nazipova AA; Kolpakova TV; Zinchenko DV; Philippov PP; Permyakov EA; Senin II
    Amino Acids; 2012 Apr; 42(4):1435-42. PubMed ID: 21344177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deconvoluting Monomer- and Dimer-Specific Distance Distributions between Spin Labels in a Monomer/Dimer Mixture Using
    Schmidt T; Kubatova N; Clore GM
    J Am Chem Soc; 2024 Jul; 146(26):17964-17973. PubMed ID: 38888555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR and EPR-DEER Structure of a Dimeric Guanylate Cyclase Activator Protein-5 from Zebrafish Photoreceptors.
    Cudia D; Roseman GP; Assafa TE; Shahu MK; Scholten A; Menke-Sell SK; Yamada H; Koch KW; Milhauser G; Ames JB
    Biochemistry; 2021 Oct; 60(41):3058-3070. PubMed ID: 34609135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.