BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23906653)

  • 1. Determination of the reaction rate coefficient of sulphide mine tailings deposited under water.
    Awoh AS; Mbonimpa M; Bussière B
    J Environ Manage; 2013 Oct; 128():1023-32. PubMed ID: 23906653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of pyrite oxidation in fresh mine tailings under near-neutral conditions.
    Alakangas L; Lundberg A; Nason P
    J Environ Monit; 2012 Aug; 14(8):2245-53. PubMed ID: 22777533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemical changes in sulfidic mine tailings stored under a shallow water cover.
    Vigneault B; Campbell PG; Tessier A; De Vitre R
    Water Res; 2001 Mar; 35(4):1066-76. PubMed ID: 11235873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a Geosynthetic-Clay-Liner Cover System at a Cu/Zn Mine Tailings Impoundment.
    Pakostova E; Schmall AJ; Holland SP; White H; Ptacek CJ; Blowes DW
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative performance of cover systems to prevent acid mine drainage from pre-oxidized tailings: A numerical hydro-geochemical assessment.
    Pabst T; Bussière B; Aubertin M; Molson J
    J Contam Hydrol; 2018 Jul; 214():39-53. PubMed ID: 29861334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of sulphide in abandoned mine tailings by ferrate.
    Lee YH; Yu MR; Chang YY; Kang SH; Yang JK
    Environ Technol; 2015; 36(1-4):254-9. PubMed ID: 25413120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.
    Nason P; Johnson RH; Neuschütz C; Alakangas L; Öhlander B
    J Hazard Mater; 2014 Feb; 267():245-54. PubMed ID: 24462894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of cemented layers and hardpans on oxygen diffusivity in mining waste heaps: a field study of the Halsbrücke lead-zinc mine tailings (Germany).
    Kohfahl C; Graupner T; Fetzer C; Pekdeger A
    Sci Total Environ; 2010 Nov; 408(23):5932-9. PubMed ID: 20850166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of temporal changes in oxidation rates of sulphides in copper mine tailings at Laver, Northern Sweden.
    Alakangas L; Ohlander B; Lundberg A
    Sci Total Environ; 2010 Feb; 408(6):1386-92. PubMed ID: 19939438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suitability of using diffusive gradients in thin films (DGT) to study metal bioavailability in mine tailings: possibilities and constraints.
    Conesa HM; Schulin R; Nowack B
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):657-64. PubMed ID: 19816728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A contribution to improve the calculation of the acid generating potential of mining wastes.
    Chopard A; Benzaazoua M; Bouzahzah H; Plante B; Marion P
    Chemosphere; 2017 May; 175():97-107. PubMed ID: 28211340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the application of dry covers over carbonate-rich sulphide tailings.
    Lu J; Alakangas L; Jia Y; Gotthardsson J
    J Hazard Mater; 2013 Jan; 244-245():180-94. PubMed ID: 23246954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root penetration through sealing layers at mine deposit sites.
    Stoltz E; Greger M
    Waste Manag Res; 2006 Dec; 24(6):552-9. PubMed ID: 17253002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiproxy characterization of sedimentary facies in a submarine sulphide mine tailings dumping site and their environmental significance: The study case of Portmán Bay (SE Spain).
    Baza-Varas A; Canals M; Frigola J; Cerdà-Domènech M; Rodés N; Tarrés M; Sanchez-Vidal A;
    Sci Total Environ; 2022 Mar; 810():151183. PubMed ID: 34715228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania.
    Zobrist J; Sima M; Dogaru D; Senila M; Yang H; Popescu C; Roman C; Bela A; Frei L; Dold B; Balteanu D
    Environ Sci Pollut Res Int; 2009 Aug; 16 Suppl 1():S14-26. PubMed ID: 19159960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine.
    Simón M; Martín F; Ortiz I; García I; Fernández J; Fernández E; Dorronsoro C; Aguilar J
    Sci Total Environ; 2001 Nov; 279(1-3):63-74. PubMed ID: 11712606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.
    Ercikdi B; Baki H; İzki M
    J Environ Manage; 2013 Jan; 115():5-13. PubMed ID: 23220652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elemental mobility in sulfidic mine tailings reclaimed with paper mill by-products as sealing materials.
    Jia Y; Stahre N; Mäkitalo M; Maurice C; Öhlander B
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20372-20389. PubMed ID: 28707240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.
    Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ study of beneficial utilization of coal fly ash in reactive mine tailings.
    Lee JK; Shang JQ; Wang H; Zhao C
    J Environ Manage; 2014 Mar; 135():73-80. PubMed ID: 24525077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.