These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 23906806)
1. Enantiomeric separation of isochromene derivatives by high-performance liquid chromatography using cyclodextrin based stationary phases and principal component analysis of the separation data. Nanayakkara YS; Woods RM; Breitbach ZS; Handa S; Slaughter LM; Armstrong DW J Chromatogr A; 2013 Aug; 1305():94-101. PubMed ID: 23906806 [TBL] [Abstract][Full Text] [Related]
2. Enantiomeric separation of functionalized ethano-bridged Tröger bases using macrocyclic cyclofructan and cyclodextrin chiral selectors in high-performance liquid chromatography and capillary electrophoresis with application of principal component analysis. Weatherly CA; Na YC; Nanayakkara YS; Woods RM; Sharma A; Lacour J; Armstrong DW J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Apr; 955-956():72-80. PubMed ID: 24631813 [TBL] [Abstract][Full Text] [Related]
3. Reprint of: Enantiomeric separation of functionalized ethano-bridged Tröger bases using macrocyclic cyclofructan and cyclodextrin chiral selectors in high-performance liquid chromatography and capillary electrophoresis with application of principal component analysis. Weatherly CA; Na YC; Nanayakkara YS; Woods RM; Sharma A; Lacour J; Armstrong DW J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Oct; 968():40-8. PubMed ID: 24910297 [TBL] [Abstract][Full Text] [Related]
4. Separation of chiral furan derivatives by liquid chromatography using cyclodextrin-based chiral stationary phases. Han X; Yao T; Liu Y; Larock RC; Armstrong DW J Chromatogr A; 2005 Jan; 1063(1-2):111-20. PubMed ID: 15700462 [TBL] [Abstract][Full Text] [Related]
5. Enantiomeric separation in high-performance liquid chromatography using novel β-cyclodextrin derivatives modified by R-configuration groups as chiral stationary phases. Li X; Zhou ZM; Xu D; Zhang J Talanta; 2011 May; 84(4):1080-92. PubMed ID: 21530782 [TBL] [Abstract][Full Text] [Related]
6. The role of pi-acidic and pi-basic chiral stationary phases in the high-performance liquid chromatographic enantioseparation of unusual beta-amino acids. Ilisz I; Berkecz R; Forró E; Fülöp F; Armstrong DW; Péter A Chirality; 2009 Mar; 21(3):339-48. PubMed ID: 18553499 [TBL] [Abstract][Full Text] [Related]
8. Separation performance and recognition mechanism of mono(6-deoxy-imino)-beta-cyclodextrins chiral stationary phases in high-performance liquid chromatography. Zhou ZM; Li X; Chen XP; Fang M; Dong X Talanta; 2010 Jul; 82(2):775-84. PubMed ID: 20602969 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of ionic liquids functionalized β-cyclodextrin-bonded chiral stationary phases and their applications in high-performance liquid chromatography. Zhou Z; Li X; Chen X; Hao X Anal Chim Acta; 2010 Sep; 678(2):208-14. PubMed ID: 20888454 [TBL] [Abstract][Full Text] [Related]
10. The enantiomeric separation of tetrahydrobenzimidazoles cyclodextrins- and cyclofructans. Perera S; Na YC; Doundoulakis T; Ngo VJ; Feng Q; Breitbach ZS; Lovely CJ; Armstrong DW Chirality; 2013 Feb; 25(2):133-40. PubMed ID: 23238886 [TBL] [Abstract][Full Text] [Related]
11. Chiral separation of N-imidazole derivatives, aromatase inhibitors, by cyclodextrin-capillary zone electrophoresis. Mechanism of enantioselective recognition. Foulon C; Danel C; Vaccher MP; Bonte JP; Vaccher C; Goossens JF Electrophoresis; 2004 Aug; 25(16):2735-44. PubMed ID: 15352005 [TBL] [Abstract][Full Text] [Related]
12. [Separation of chiral pharmaceutical drugs by chromatographic and electrophoretic techniques]. Morin P Ann Pharm Fr; 2009 Jul; 67(4):241-50. PubMed ID: 19596097 [TBL] [Abstract][Full Text] [Related]
13. Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. Zhong Q; He L; Beesley TE; Trahanovsky WS; Sun P; Wang C; Armstrong DW J Chromatogr A; 2006 May; 1115(1-2):19-45. PubMed ID: 16620856 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and application of mono-2A-azido-2A-deoxyperphenylcarbamoylated beta-cyclodextrin and mono-2A-azido-2A-deoxyperacetylated beta-cyclodextrin as chiral stationary phases for high-performance liquid chromatography. Poon YF; Muderawan IW; Ng SC J Chromatogr A; 2006 Jan; 1101(1-2):185-97. PubMed ID: 16236286 [TBL] [Abstract][Full Text] [Related]
15. Enantiomeric separation of d-/l-norepinephrine and -epinephrine by high-performance liquid chromatography with a beta-cyclodextrin type chiral stationary phase. Fukushima T; Murayama K; Santa T; Homma H; Imai K Biomed Chromatogr; 1998; 12(1):1-3. PubMed ID: 9470965 [TBL] [Abstract][Full Text] [Related]
16. Enantioseparation performance of novel benzimido-β-cyclodextrins derivatized by ionic liquids as chiral stationary phases. Li X; Zhou Z Anal Chim Acta; 2014 Mar; 819():122-9. PubMed ID: 24636420 [TBL] [Abstract][Full Text] [Related]
17. Comparison of separation performances of novel β-cyclodextrin-based chiral stationary phases in high-performance liquid chromatographic enantioseparation. Varga G; Fodor G; Ilisz I; Szemán J; Visy J; Szente L; Péter A J Pharm Biomed Anal; 2012 Nov; 70():71-6. PubMed ID: 22695817 [TBL] [Abstract][Full Text] [Related]
18. Direct enantiomeric separations by high performance liquid chromatography using cyclodextrins. Han SM Biomed Chromatogr; 1997; 11(5):259-71. PubMed ID: 9376706 [TBL] [Abstract][Full Text] [Related]
19. HPLC enantioseparation on cyclodextrin-based chiral stationary phases. Wang Y; Ng SC Methods Mol Biol; 2013; 970():69-79. PubMed ID: 23283771 [TBL] [Abstract][Full Text] [Related]
20. Comparative HPLC enantioseparation on substituted phenylcarbamoylated cyclodextrin chiral stationary phases and mobile phase effects. Lin C; Fan J; Liu WN; Tan Y; Zhang WG J Pharm Biomed Anal; 2014 Sep; 98():221-7. PubMed ID: 24937808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]