BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 23907056)

  • 1. Interactions of chitin nanocrystals with β-lactoglobulin at the oil-water interface, studied by drop shape tensiometry.
    Gülseren I; Corredig M
    Colloids Surf B Biointerfaces; 2013 Nov; 111():672-9. PubMed ID: 23907056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization mechanism of oil-in-water emulsions by β-lactoglobulin and gum arabic.
    Bouyer E; Mekhloufi G; Le Potier I; de Kerdaniel Tdu F; Grossiord JL; Rosilio V; Agnely F
    J Colloid Interface Sci; 2011 Feb; 354(2):467-77. PubMed ID: 21145063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil-in-water Pickering emulsion stabilization with oppositely charged polysaccharide particles: chitin nanocrystals/fucoidan complexes.
    Liu Z; Hu M; Zhang S; Jiang L; Xie F; Li Y
    J Sci Food Agric; 2021 May; 101(7):3003-3012. PubMed ID: 33205457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions.
    Tzoumaki MV; Moschakis T; Scholten E; Biliaderis CG
    Food Funct; 2013 Jan; 4(1):121-9. PubMed ID: 23064096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and structural change of beta-lactoglobulin at the diacylglycerol-water interface.
    Sakuno MM; Matsumoto S; Kawai S; Taihei K; Matsumura Y
    Langmuir; 2008 Oct; 24(20):11483-8. PubMed ID: 18803411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and beta-lactoglobulin mixed systems.
    Martinez MJ; Sánchez CC; Patino JM; Pilosof AM
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):39-47. PubMed ID: 19013776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability.
    Ali A; Mekhloufi G; Huang N; Agnely F
    Int J Pharm; 2016 Mar; 500(1-2):291-304. PubMed ID: 26784982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability.
    Zhai J; Wooster TJ; Hoffmann SV; Lee TH; Augustin MA; Aguilar MI
    Langmuir; 2011 Aug; 27(15):9227-36. PubMed ID: 21668007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitin nanocrystals for Pickering high internal phase emulsions.
    Perrin E; Bizot H; Cathala B; Capron I
    Biomacromolecules; 2014 Oct; 15(10):3766-71. PubMed ID: 25180643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure.
    Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ
    Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial properties of mixed beta-lactoglobulin-SDS layers at the water/air and water/oil interface.
    Pradines V; Krägel J; Fainerman VB; Miller R
    J Phys Chem B; 2009 Jan; 113(3):745-51. PubMed ID: 19113874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes.
    Lestringant P; Guri A; Gülseren I; Relkin P; Corredig M
    J Agric Food Chem; 2014 Aug; 62(33):8357-64. PubMed ID: 25077960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B.
    Knudsen JC; Øgendal LH; Skibsted LH
    Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of high pressure homogenization on the structure and the interfacial and emulsifying properties of β-lactoglobulin.
    Ali A; Le Potier I; Huang N; Rosilio V; Cheron M; Faivre V; Turbica I; Agnely F; Mekhloufi G
    Int J Pharm; 2018 Feb; 537(1-2):111-121. PubMed ID: 29241702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of free protein on flocculation stability of beta-lactoglobulin stabilized oil-in-water emulsions at neutral pH and ambient temperature.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2004 Nov; 20(24):10394-8. PubMed ID: 15544365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic studies of conformational changes of β-lactoglobulin adsorbed on gold nanoparticle surfaces.
    Winuprasith T; Suphantharika M; McClements DJ; He L
    J Colloid Interface Sci; 2014 Feb; 416():184-9. PubMed ID: 24370420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous foams stabilized by chitin nanocrystals.
    Tzoumaki MV; Karefyllakis D; Moschakis T; Biliaderis CG; Scholten E
    Soft Matter; 2015 Aug; 11(31):6245-53. PubMed ID: 26154562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosurfactant-protein mixtures: Quillaja Bark Saponin at water/air and water/oil interfaces in presence of β-lactoglobulin.
    Piotrowski M; Lewandowska J; Wojciechowski K
    J Phys Chem B; 2012 Apr; 116(16):4843-50. PubMed ID: 22455623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial behaviour of β-lactoglobulin aggregates at the oil-water interface studied using particle tracking and dilatational rheology.
    Yang N; Ye J; Li J; Hu B; Leheny RL; Nishinari K; Fang Y
    Soft Matter; 2021 Mar; 17(10):2973-2984. PubMed ID: 33595572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.