BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23907115)

  • 1. Antiapoptotic activity of argon and xenon.
    Spaggiari S; Kepp O; Rello-Varona S; Chaba K; Adjemian S; Pype J; Galluzzi L; Lemaire M; Kroemer G
    Cell Cycle; 2013 Aug; 12(16):2636-42. PubMed ID: 23907115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells.
    Rizvi M; Jawad N; Li Y; Vizcaychipi MP; Maze M; Ma D
    Exp Biol Med (Maywood); 2010 Jul; 235(7):886-91. PubMed ID: 20472713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms.
    Koziakova M; Harris K; Edge CJ; Franks NP; White IL; Dickinson R
    Br J Anaesth; 2019 Nov; 123(5):601-609. PubMed ID: 31470983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.
    Harris K; Armstrong SP; Campos-Pires R; Kiru L; Franks NP; Dickinson R
    Anesthesiology; 2013 Nov; 119(5):1137-48. PubMed ID: 23867231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen.
    Buchheit RG; Schreiner HR; Doebbler GF
    J Bacteriol; 1966 Feb; 91(2):622-7. PubMed ID: 5883104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INERT GAS COMPONENTS FOR SPACE CAPSULE ATMOSPHERES.
    BOND GF
    Fed Proc; 1963; 22():1042-5. PubMed ID: 14046274
    [No Abstract]   [Full Text] [Related]  

  • 7. [The pharmacology of the rare gases (helium, neon, argon, krypton, xenon)].
    Featherstone RM; Settle W
    Actual Pharmacol (Paris); 1974; 27():69-86. PubMed ID: 4620129
    [No Abstract]   [Full Text] [Related]  

  • 8. Influence of helium, xenon, and other noble gases on cryopreservation of Hela and l929 cell lines.
    Shishova NV; Ugraitskaya SV; Shvirst NE; Kaurova SA; Gagarinsky EL; Kovtun AL; Fesenko EE
    Cryobiology; 2021 Oct; 102():114-120. PubMed ID: 34270983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprotection of dopamine neurons by xenon against low-level excitotoxic insults is not reproduced by other noble gases.
    Le Nogue D; Lavaur J; Milet A; Ramirez-Gil JF; Katz I; Lemaire M; Farjot G; Hirsch EC; Michel PP
    J Neural Transm (Vienna); 2020 Jan; 127(1):27-34. PubMed ID: 31807953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CONTROLLED ATMOSPHERE INCUBATOR FOR PHYSIOLOGICAL STUDIES INVOLVING THE RARE GASES.
    LAWRIE JA; SCHREINER HR; COWLEY CW
    J Appl Physiol; 1964 Mar; 19():330-2. PubMed ID: 14155307
    [No Abstract]   [Full Text] [Related]  

  • 11. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury.
    Jawad N; Rizvi M; Gu J; Adeyi O; Tao G; Maze M; Ma D
    Neurosci Lett; 2009 Sep; 460(3):232-6. PubMed ID: 19500647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PHYSIOLOGICAL EFFECTS OF THE NOBLE GASES ON FROG SCIATIC NERVE AND GASTROCNEMIUS MUSLCE.
    GOTTLIEB SF; WEATHERLY JM
    Am J Physiol; 1965 Mar; 208():407-11. PubMed ID: 14264726
    [No Abstract]   [Full Text] [Related]  

  • 13. Postconditioning effects of argon or xenon on early graft function in a porcine model of kidney autotransplantation.
    De Deken J; Rex S; Lerut E; Martinet W; Monbaliu D; Pirenne J; Jochmans I
    Br J Surg; 2018 Jul; 105(8):1051-1060. PubMed ID: 29603122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Argon, xenon, hydrogen, and the oxygen consumption and glycolysis of mouse tissue slices.
    SOUTH FE; COOK SF
    J Gen Physiol; 1954 Jan; 37(3):335-41. PubMed ID: 13118104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General biological effects of the helium-xenon series of elements.
    Schreiner HR
    Fed Proc; 1968; 27(3):872-8. PubMed ID: 5655010
    [No Abstract]   [Full Text] [Related]  

  • 16. CELLULAR NARCOSIS OF PARAMECIUM MULTIMICRONUCLEATUM BY XENON AND OTHER CHEMICALLY INERT GASES.
    SEARS DF; GITTLESON SM
    J Protozool; 1964 Nov; 11():538-46. PubMed ID: 14231182
    [No Abstract]   [Full Text] [Related]  

  • 17. GENERAL BIOLOGICAL SIGNIFICANCE OF METABOLICALLY INERT GASES.
    SCHREINER HR
    Int Anesthesiol Clin; 1963 Aug; 1():919-26. PubMed ID: 14113539
    [No Abstract]   [Full Text] [Related]  

  • 18. The uses of helium and xenon in current clinical practice.
    Harris PD; Barnes R
    Anaesthesia; 2008 Mar; 63(3):284-93. PubMed ID: 18289236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics).
    Koblin DD; Fang Z; Eger EI; Laster MJ; Gong D; Ionescu P; Halsey MJ; Trudell JR
    Anesth Analg; 1998 Aug; 87(2):419-24. PubMed ID: 9706943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Advances in research on neuroprotective effects of inert gas].
    Chen S; Guo SX; Hong Y; Zhang JM
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2011 Jan; 40(1):101-6. PubMed ID: 21319382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.