BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23907253)

  • 1. Origin of tryptophan fluorescence lifetimes. Part 2: fluorescence lifetimes origin of tryptophan in proteins.
    Albani JR
    J Fluoresc; 2014 Jan; 24(1):105-17. PubMed ID: 23907253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of tryptophan fluorescence lifetimes part 1. Fluorescence lifetimes origin of tryptophan free in solution.
    Albani JR
    J Fluoresc; 2014 Jan; 24(1):93-104. PubMed ID: 23912963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights in the interpretation of tryptophan fluorescence : origin of the fluorescence lifetime and characterization of a new fluorescence parameter in proteins: the emission to excitation ratio.
    Albani JR
    J Fluoresc; 2007 Jul; 17(4):406-17. PubMed ID: 17458686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-structures formed in the excited state are responsible for tryptophan residues fluorescence in β-lactoglobulin.
    Albani JR
    J Fluoresc; 2011 Jul; 21(4):1683-7. PubMed ID: 21350857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of fluorescence lifetimes in human serum albumin. Studies on native and denatured protein.
    Amiri M; Jankeje K; Albani JR
    J Fluoresc; 2010 May; 20(3):651-6. PubMed ID: 20195715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence lifetimes of tryptophan: structural origin and relation with So --> 1Lb and So --> 1La transitions.
    Albani JR
    J Fluoresc; 2009 Nov; 19(6):1061-71. PubMed ID: 19533308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence.
    Albani JR; Vogelaer J; Bretesche L; Kmiecik D
    J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between proteins tertiary structure, tryptophan fluorescence lifetimes and tryptophan S(o)→(1)L(b) and S(o)→(1)L(a) transitions. Studies on α1-acid glycoprotein and β-lactoglobulin.
    Albani JR
    J Fluoresc; 2011 May; 21(3):1301-9. PubMed ID: 21318433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment.
    Pan CP; Muiño PL; Barkley MD; Callis PR
    J Phys Chem B; 2011 Mar; 115(12):3245-53. PubMed ID: 21370844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence study of the three tryptophan residues of the pore-forming domain of colicin A using multifrequency phase fluorometry.
    Vos R; Engelborghs Y; Izard J; Baty D
    Biochemistry; 1995 Feb; 34(5):1734-43. PubMed ID: 7849033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipolar relaxation in proteins on the nanosecond timescale observed by wavelength-resolved phase fluorometry of tryptophan fluorescence.
    Lakowicz JR; Cherek H
    J Biol Chem; 1980 Feb; 255(3):831-4. PubMed ID: 7356662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-resolved fluorescence emission of proteins using the synchrotron radiation as pulsed-light source: cross-correlations between lifetimes, rotational correlation times and tryptophan heterogeneity in FKBP59 immunophilin.
    Vincent M; Rouvière N; Gallay J
    Cell Mol Biol (Noisy-le-grand); 2000 Sep; 46(6):1113-31. PubMed ID: 10976868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide sequence and conformation strongly influence tryptophan fluorescence.
    Alston RW; Lasagna M; Grimsley GR; Scholtz JM; Reinhart GD; Pace CN
    Biophys J; 2008 Mar; 94(6):2280-7. PubMed ID: 18065477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation and dynamics of bovine brain S-100a protein determined by fluorescence spectroscopy.
    Wang CK; Mani RS; Kay CM; Cheung HC
    Biochemistry; 1992 May; 31(17):4289-95. PubMed ID: 1567874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational effects on tryptophan fluorescence in cyclic hexapeptides.
    Pan CP; Barkley MD
    Biophys J; 2004 Jun; 86(6):3828-35. PubMed ID: 15189879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state.
    Swaminathan R; Krishnamoorthy G; Periasamy N
    Biophys J; 1994 Nov; 67(5):2013-23. PubMed ID: 7858139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluorescence study of tryptophan-histidine interactions in the peptide anantin and in solution.
    Vos R; Engelborghs Y
    Photochem Photobiol; 1994 Jul; 60(1):24-32. PubMed ID: 8073074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic clustering in acid-denatured IL-2 and fluorescence of a Trp NH-pi H-bond.
    Nanda V; Liang SM; Brand L
    Biochem Biophys Res Commun; 2000 Dec; 279(3):770-8. PubMed ID: 11162427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence of cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid: a single tryptophan chi(1) rotamer model.
    Liu B; Thalji RK; Adams PD; Fronczek FR; McLaughlin ML; Barkley MD
    J Am Chem Soc; 2002 Nov; 124(44):13329-38. PubMed ID: 12405862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan side chain conformers monitored by NMR and time-resolved fluorescence spectroscopies.
    Julien O; Wang G; Jonckheer A; Engelborghs Y; Sykes BD
    Proteins; 2012 Jan; 80(1):239-45. PubMed ID: 22072563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.