These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23907253)

  • 21. MD + QM correlations with tryptophan fluorescence spectral shifts and lifetimes.
    Callis PR; Tusell JR
    Methods Mol Biol; 2014; 1076():171-214. PubMed ID: 24108627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase.
    Ross JB; Schmidt CJ; Brand L
    Biochemistry; 1981 Jul; 20(15):4369-77. PubMed ID: 7025898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A time-resolved fluorescence study of human copper-zinc superoxide dismutase.
    Rosato N; Mei G; Gratton E; Bannister JV; Bannister WH; Finazzi-Agrò A
    Biophys Chem; 1990 May; 36(1):41-6. PubMed ID: 2207272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II.
    Chabbert M; Lukas TJ; Watterson DM; Axelsen PH; Prendergast FG
    Biochemistry; 1991 Jul; 30(30):7615-30. PubMed ID: 1854758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.
    Tayeh N; Rungassamy T; Albani JR
    J Pharm Biomed Anal; 2009 Sep; 50(2):107-16. PubMed ID: 19473803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence properties of tryptophan residues in the monomeric d-chain of Glossoscolex paulistus hemoglobin: an interpretation based on a comparative molecular model.
    Bosch Cabral C; Imasato H; Rosa JC; Laure HJ; da Silva CH; Tabak M; Garratt RC; Greene LJ
    Biophys Chem; 2002 Jun; 97(2-3):139-57. PubMed ID: 12050006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dead-end elimination method, tryptophan rotamers, and fluorescence lifetimes.
    Hellings M; De Maeyer M; Verheyden S; Hao Q; Van Damme EJ; Peumans WJ; Engelborghs Y
    Biophys J; 2003 Sep; 85(3):1894-902. PubMed ID: 12944302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photophysical Behavior and Fluorescence Quenching of l-Tryptophan in Choline Chloride-Based Deep Eutectic Solvents.
    Kadyan A; Juneja S; Pandey S
    J Phys Chem B; 2019 Sep; 123(35):7578-7587. PubMed ID: 31402653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A step toward the prediction of the fluorescence lifetimes of tryptophan residues in proteins based on structural and spectral data.
    Sillen A; Díaz JF; Engelborghs Y
    Protein Sci; 2000 Jan; 9(1):158-69. PubMed ID: 10739258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model for multiexponential tryptophan fluorescence intensity decay in proteins.
    Bajzer Z; Prendergast FG
    Biophys J; 1993 Dec; 65(6):2313-23. PubMed ID: 8312471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants.
    Willaert K; Loewenthal R; Sancho J; Froeyen M; Fersht A; Engelborghs Y
    Biochemistry; 1992 Jan; 31(3):711-6. PubMed ID: 1731927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A long lifetime component in the tryptophan fluorescence of some proteins.
    Döring K; Konermann L; Surrey T; Jähnig F
    Eur Biophys J; 1995; 23(6):423-32. PubMed ID: 7729367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1-24).
    Ross JB; Rousslang KW; Brand L
    Biochemistry; 1981 Jul; 20(15):4361-9. PubMed ID: 6269589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tryptophan-tryptophan energy transfer and classification of tryptophan residues in proteins using a therapeutic monoclonal antibody as a model.
    Kayser V; Chennamsetty N; Voynov V; Helk B; Trout BL
    J Fluoresc; 2011 Jan; 21(1):275-88. PubMed ID: 20886272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop.
    Atkins WM; Stayton PS; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3406-16. PubMed ID: 1672820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-induced conformational changes in spinach ferredoxin: steady-state and time-resolved fluorescence studies.
    Kieleczawa J; France LL; Sutherland JC; Hind G
    Arch Biochem Biophys; 1992 Oct; 298(1):63-9. PubMed ID: 1524443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Charged Amino Acids in Sullying the Fluorescence of Tryptophan or Conjugated Dansyl Probe in Monomeric Proteins.
    Kumar A; Alom SE; Ahari D; Priyadarshi A; Ansari MZ; Swaminathan R
    Biochemistry; 2022 Mar; 61(5):339-353. PubMed ID: 35107253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-resolved fluorescence study of human recombinant interferon alpha 2. Association state of the protein, spatial proximity of the two tryptophan residues.
    Vincent M; Li De La Sierra IM; Berberan-Santos MN; Diaz A; Diaz M; Padron G; Gallay J
    Eur J Biochem; 1992 Dec; 210(3):953-61. PubMed ID: 1483478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Picosecond dynamics of a peptide from the acetylcholine receptor interacting with a neurotoxin probed by tailored tryptophan fluorescence.
    Chowdhury P; Gondry M; Genet R; Martin JL; Ménez A; Négrerie M; Petrich JW
    Photochem Photobiol; 2003 Feb; 77(2):151-7. PubMed ID: 12785053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interpretation of fluorescence decays using a power-like model.
    Włodarczyk J; Kierdaszuk B
    Biophys J; 2003 Jul; 85(1):589-98. PubMed ID: 12829513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.