These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 23907277)

  • 1. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization.
    Yuan J; Xu G; Yu Y; Zhou Y; Carson PL; Wang X; Liu X
    J Biomed Opt; 2013 Aug; 18(8):86001. PubMed ID: 23907277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time photoacoustic tomograpghy using linear array probe and detection of line structure using Hough transform.
    Shin SW; Park J; Shin DH; Song CG; Kim KS
    Biomed Mater Eng; 2015; 26 Suppl 1():S1483-90. PubMed ID: 26405912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of objects in photoacoustic tomography using selective filtering.
    Shin DH; Yang Y; Song CG
    Biomed Mater Eng; 2015; 26 Suppl 1():S1223-30. PubMed ID: 26405881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoacoustic imaging of the bladder: a pilot study.
    Kamaya A; Vaithilingam S; Chung BI; Oralkan O; Khuri-Yakub BT
    J Ultrasound Med; 2013 Jul; 32(7):1245-50. PubMed ID: 23804347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid CPU-GPGPU approach for real-time elastography.
    Yang X; Deka S; Righetti R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2631-45. PubMed ID: 23443699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast 2-D ultrasound strain imaging: the benefits of using a GPU.
    Idzenga T; Gaburov E; Vermin W; Menssen J; de Korte C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):207-13. PubMed ID: 24402909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementing capon beamforming on a GPU for real-time cardiac ultrasound imaging.
    Åsen JP; Buskenes JI; Colombo Nilsen CI; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):76-85. PubMed ID: 24402897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent photoacoustic-ultrasound imaging using single-laser pulses.
    Hung SY; Wu WS; Hsieh BY; Li PC
    J Biomed Opt; 2015 Aug; 20(8):86004. PubMed ID: 26259707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput transmission optical projection tomography using low cost graphics processing unit.
    Vinegoni C; Fexon L; Feruglio PF; Pivovarov M; Figueiredo JL; Nahrendorf M; Pozzo A; Sbarbati A; Weissleder R
    Opt Express; 2009 Dec; 17(25):22320-32. PubMed ID: 20052155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tutorial on photoacoustic tomography.
    Zhou Y; Yao J; Wang LV
    J Biomed Opt; 2016 Jun; 21(6):61007. PubMed ID: 27086868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Singular value decomposition analysis of a photoacoustic imaging system and 3D imaging at 0.7 FPS.
    Roumeliotis MB; Stodilka RZ; Anastasio MA; Ng E; Carson JJ
    Opt Express; 2011 Jul; 19(14):13405-17. PubMed ID: 21747496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit.
    Watanabe Y
    J Biomed Opt; 2012 May; 17(5):050503. PubMed ID: 22612118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time flow with fast GPU reconstruction for continuous assessment of cardiac output.
    Kowalik GT; Steeden JA; Pandya B; Odille F; Atkinson D; Taylor A; Muthurangu V
    J Magn Reson Imaging; 2012 Dec; 36(6):1477-82. PubMed ID: 22745017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging.
    Chen SL; Ling T; Guo LJ
    J Biomed Opt; 2011 May; 16(5):056001. PubMed ID: 21639569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPU-accelerated Double-stage Delay-multiply-and-sum Algorithm for Fast Photoacoustic Tomography Using LED Excitation and Linear Arrays.
    Miri Rostami SR; Mozaffarzadeh M; Ghaffari-Miab M; Hariri A; Jokerst J
    Ultrason Imaging; 2019 Sep; 41(5):301-316. PubMed ID: 31322057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method.
    Peng K; He L; Zhu Z; Tang J; Xiao J
    Appl Opt; 2013 Dec; 52(34):8270-9. PubMed ID: 24513828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware.
    Sorensen TS; Schaeffter T; Noe KO; Hansen MS
    IEEE Trans Med Imaging; 2008 Apr; 27(4):538-47. PubMed ID: 18390350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medical image processing on the GPU - past, present and future.
    Eklund A; Dufort P; Forsberg D; LaConte SM
    Med Image Anal; 2013 Dec; 17(8):1073-94. PubMed ID: 23906631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deconvolution reconstruction of full-view and limited-view photoacoustic tomography: a simulation study.
    Zhang C; Wang Y
    J Opt Soc Am A Opt Image Sci Vis; 2008 Oct; 25(10):2436-43. PubMed ID: 18830321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit.
    Rasakanthan J; Sugden K; Tomlins PH
    J Biomed Opt; 2011 Feb; 16(2):020505. PubMed ID: 21361661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.