These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 23907516)
1. High diversity and potential origins of T4-type bacteriophages on the surface of Arctic glaciers. Bellas CM; Anesio AM Extremophiles; 2013 Sep; 17(5):861-70. PubMed ID: 23907516 [TBL] [Abstract][Full Text] [Related]
2. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Filée J; Tétart F; Suttle CA; Krisch HM Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12471-6. PubMed ID: 16116082 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of T4-type bacteriophages in a rice field. Jia Z; Ishihara R; Nakajima Y; Asakawa S; Kimura M Environ Microbiol; 2007 Apr; 9(4):1091-6. PubMed ID: 17359280 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the major capsid genes (g23) of T4-type bacteriophages in the wetlands of northeast China. Zheng C; Wang G; Liu J; Song C; Gao H; Liu X Microb Ecol; 2013 Apr; 65(3):616-25. PubMed ID: 23306393 [TBL] [Abstract][Full Text] [Related]
5. [Genetic diversity of major capsid genes (g23) of T4-type bacteriophages in natural environments--a review]. Wang G; Liu J; Kimura M Wei Sheng Wu Xue Bao; 2011 Jun; 51(6):732-9. PubMed ID: 21866696 [TBL] [Abstract][Full Text] [Related]
6. Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison. Grzesiak J; Górniak D; Świątecki A; Aleksandrzak-Piekarczyk T; Szatraj K; Zdanowski MK Extremophiles; 2015 Sep; 19(5):885-97. PubMed ID: 26104673 [TBL] [Abstract][Full Text] [Related]
7. The diversity and evolution of the T4-type bacteriophages. Desplats C; Krisch HM Res Microbiol; 2003 May; 154(4):259-67. PubMed ID: 12798230 [TBL] [Abstract][Full Text] [Related]
8. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. Edwards A; Mur LA; Girdwood SE; Anesio AM; Stibal M; Rassner SM; Hell K; Pachebat JA; Post B; Bussell JS; Cameron SJ; Griffith GW; Hodson AJ; Sattler B FEMS Microbiol Ecol; 2014 Aug; 89(2):222-37. PubMed ID: 24433483 [TBL] [Abstract][Full Text] [Related]
9. The capsid of the T4 phage superfamily: the evolution, diversity, and structure of some of the most prevalent proteins in the biosphere. Comeau AM; Krisch HM Mol Biol Evol; 2008 Jul; 25(7):1321-32. PubMed ID: 18391067 [TBL] [Abstract][Full Text] [Related]
10. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. Cameron KA; Hodson AJ; Osborn AM FEMS Microbiol Ecol; 2012 Nov; 82(2):254-67. PubMed ID: 22168226 [TBL] [Abstract][Full Text] [Related]
11. Diversity patterns of microbial eukaryotes mirror those of bacteria in Antarctic cryoconite holes. Sommers P; Darcy JL; Gendron EMS; Stanish LF; Bagshaw EA; Porazinska DL; Schmidt SK FEMS Microbiol Ecol; 2018 Jan; 94(1):. PubMed ID: 29228256 [TBL] [Abstract][Full Text] [Related]
12. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. Edwards A; Anesio AM; Rassner SM; Sattler B; Hubbard B; Perkins WT; Young M; Griffith GW ISME J; 2011 Jan; 5(1):150-60. PubMed ID: 20664552 [TBL] [Abstract][Full Text] [Related]
13. Assessing the diversity of the g23 gene of T4-like bacteriophages from Lake Baikal with high-throughput sequencing. Potapov S; Belykh O; Krasnopeev A; Gladkikh A; Kabilov M; Tupikin A; Butina T FEMS Microbiol Lett; 2018 Feb; 365(3):. PubMed ID: 29228190 [TBL] [Abstract][Full Text] [Related]
14. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. Tétart F; Desplats C; Kutateladze M; Monod C; Ackermann HW; Krisch HM J Bacteriol; 2001 Jan; 183(1):358-66. PubMed ID: 11114936 [TBL] [Abstract][Full Text] [Related]
15. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Stibal M; Sabacká M; Kastovská K Microb Ecol; 2006 Nov; 52(4):644-54. PubMed ID: 17072679 [TBL] [Abstract][Full Text] [Related]
17. Sources of Zaborska A J Environ Radioact; 2017 Dec; 180():19-26. PubMed ID: 28987869 [TBL] [Abstract][Full Text] [Related]
18. Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Gokul JK; Hodson AJ; Saetnan ER; Irvine-Fynn TD; Westall PJ; Detheridge AP; Takeuchi N; Bussell J; Mur LA; Edwards A Mol Ecol; 2016 Aug; 25(15):3752-67. PubMed ID: 27261672 [TBL] [Abstract][Full Text] [Related]
19. Icescape-scale metabolomics reveals cyanobacterial and topographic control of the core metabolism of the cryoconite ecosystem of an Arctic ice cap. Gokul JK; Mur LAJ; Hodson AJ; Irvine-Fynn TDL; Debbonaire AR; Takeuchi N; Edwards A Environ Microbiol; 2023 Nov; 25(11):2549-2563. PubMed ID: 37621052 [TBL] [Abstract][Full Text] [Related]
20. Empirical testing of cryoconite granulation: Role of cyanobacteria in the formation of key biogenic structure darkening glaciers in polar regions. Wejnerowski Ł; Poniecka E; Buda J; Klimaszyk P; Piasecka A; Dziuba MK; Mugnai G; Takeuchi N; Zawierucha K J Phycol; 2023 Oct; 59(5):939-949. PubMed ID: 37572353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]