BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23907737)

  • 1. N-containing functional groups induced superior cytocompatible and hemocompatible graphene by NH₂ ion implantation.
    Guo M; Li M; Liu X; Zhao M; Li D; Geng D; Sun X; Gu H
    J Mater Sci Mater Med; 2013 Dec; 24(12):2741-8. PubMed ID: 23907737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of interaction of L-929 cells with functionalized graphene via COOH
    Zhao ML; Liu XQ; Cao Y; Li XF; Li DJ; Sun XL; Gu HQ; Wan RX
    Sci Rep; 2016 Nov; 6():37112. PubMed ID: 27845420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N
    Cao Y; Li D; Zhao M; Gong H; Wan R; Gu H
    Nanomedicine (Lond); 2017 Sep; 12(18):2245-2255. PubMed ID: 28814149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility and hemocompatibility of hydrothermally derived reduced graphene oxide using soluble starch as a reducing agent.
    Narayanan KB; Kim HD; Han SS
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110579. PubMed ID: 31689675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced cell growth on 3D graphene scaffolds implanted with nitrogen ions.
    Zhao M; Cao Y; Gong H; Sun Y; Deng J; Li D; Wan R; Gu H
    Biointerphases; 2018 May; 13(4):041001. PubMed ID: 29768924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface.
    Pan CJ; Pang LQ; Gao F; Wang YN; Liu T; Ye W; Hou YH
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():333-40. PubMed ID: 27040227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of N-doped graphene by reduction of graphene oxide with mixed microbial system and its haemocompatibility.
    Fan M; Zhu C; Feng ZQ; Yang J; Liu L; Sun D
    Nanoscale; 2014 May; 6(9):4882-8. PubMed ID: 24667844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites.
    Fan H; Wang L; Zhao K; Li N; Shi Z; Ge Z; Jin Z
    Biomacromolecules; 2010 Sep; 11(9):2345-51. PubMed ID: 20687549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application Of Phenol/Amine Copolymerized Film Modified Magnesium Alloys: Anticorrosion And Surface Biofunctionalization.
    Chen S; Zhang J; Chen Y; Zhao S; Chen M; Li X; Maitz MF; Wang J; Huang N
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24510-22. PubMed ID: 26479205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyhydroxybutyrate-co-hydroxyvalerate copolymer modified graphite oxide based 3D scaffold for tissue engineering application.
    Pramanik N; Bhattacharya S; Rath T; De J; Adhikary A; Basu RK; Kundu PP
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():534-546. PubMed ID: 30423738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic ZIF-8 decorated GO nanosheets improve biocompatibility and separation performance of polyethersulfone hollow fiber membranes: A potential membrane material for bioartificial liver application.
    Modi A; Verma SK; Bellare J
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():524-540. PubMed ID: 30033284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Hemocompatibility of a Direct Chemical Vapor Deposition-Derived Graphene Film.
    Meng X; Cheng Y; Wang P; Chen K; Chen Z; Liu X; Fu X; Wang K; Liu K; Liu Z; Duan X
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4835-4843. PubMed ID: 33474941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide.
    Meng N; Zhang SQ; Zhou NL; Shen J
    Nanotechnology; 2010 May; 21(18):185101. PubMed ID: 20378948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short fluorocarbon chains containing hydrophobic nanofibrous membranes with improved hemocompatibility, anticoagulation and anti-fouling performance.
    Wang Y; Liu Y; Liu M; Qian W; Zhou D; Liu T; Luo G; Xing M
    Colloids Surf B Biointerfaces; 2019 Aug; 180():49-57. PubMed ID: 31028964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood compatible graphene/heparin conjugate through noncovalent chemistry.
    Lee DY; Khatun Z; Lee JH; Lee YK; In I
    Biomacromolecules; 2011 Feb; 12(2):336-41. PubMed ID: 21218769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.
    Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys.
    Gao F; Hu Y; Gong Z; Liu T; Gong T; Liu S; Zhang C; Quan L; Kaveendran B; Pan C
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109947. PubMed ID: 31499970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes.
    Modi A; Verma SK; Bellare J
    J Colloid Interface Sci; 2017 Oct; 504():86-100. PubMed ID: 28527829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NH2+ implantations induced superior hemocompatibility of carbon nanotubes.
    Guo M; Li D; Zhao M; Zhang Y; Deng X; Geng D; Li R; Sun X; Gu H; Wan R
    Nanoscale Res Lett; 2013 May; 8(1):205. PubMed ID: 23634977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts.
    Lasocka I; Szulc-Dąbrowska L; Skibniewski M; Skibniewska E; Strupinski W; Pasternak I; Kmieć H; Kowalczyk P
    Toxicol In Vitro; 2018 Apr; 48():276-285. PubMed ID: 29409908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.