BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23907849)

  • 1. Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve.
    Kemp I; Dellimore K; Rodriguez R; Scheffer C; Blaine D; Weich H; Doubell A
    Australas Phys Eng Sci Med; 2013 Sep; 36(3):363-73. PubMed ID: 23907849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of leaflet skin friction and stiffness on the performance of bioprosthetic aortic valves.
    Dellimore K; Kemp I; Scheffer C; Weich H; Doubell A
    Australas Phys Eng Sci Med; 2013 Dec; 36(4):473-86. PubMed ID: 24264225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments.
    Annerel S; Claessens T; Degroote J; Segers P; Vierendeels J
    Med Eng Phys; 2014 Aug; 36(8):1014-23. PubMed ID: 24924383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent.
    Dumont K; Stijnen JM; Vierendeels J; van de Vosse FN; Verdonck PR
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):139-46. PubMed ID: 15512757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.
    Tien WH; Chen HY; Berwick ZC; Krieger J; Chambers S; Dabiri D; Kassab GS
    Eur J Vasc Endovasc Surg; 2014 Oct; 48(4):459-64. PubMed ID: 25150441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional coupled fluid-structure simulation of pericardial bioprosthetic aortic valve function.
    Makhijani VB; Yang HQ; Dionne PJ; Thubrikar MJ
    ASAIO J; 1997; 43(5):M387-92. PubMed ID: 9360067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of a stented pericardial heart valve with leaflets mounted externally.
    Avanzini A; Battini D
    Proc Inst Mech Eng H; 2014 Oct; 228(10):985-95. PubMed ID: 25252695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid-structure interaction analysis of eccentricity and leaflet rigidity on thrombosis biomarkers in bioprosthetic aortic valve replacements.
    Oks D; Samaniego C; Houzeaux G; Butakoff C; Vázquez M
    Int J Numer Method Biomed Eng; 2022 Dec; 38(12):e3649. PubMed ID: 36106918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of velocity fields and turbulence downstream of aortic valve prostheses in vitro and in vivo.
    Hasenkam JM
    Dan Med Bull; 1990 Jun; 37(3):235-49. PubMed ID: 2192836
    [No Abstract]   [Full Text] [Related]  

  • 10. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics.
    Cheng R; Lai YG; Chandran KB
    J Heart Valve Dis; 2003 Nov; 12(6):772-80. PubMed ID: 14658820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro characterization of an aortic bioprosthetic valve using Doppler echocardiography and qualitative flow visualization.
    Dellimore K; Kemp I; Rodriguez R; Scheffer C
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6641-4. PubMed ID: 23367452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta.
    Borazjani I; Ge L; Sotiropoulos F
    Ann Biomed Eng; 2010 Feb; 38(2):326-44. PubMed ID: 19806458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions.
    Gharaie SH; Mosadegh B; Morsi Y
    Cardiovasc Eng Technol; 2018 Mar; 9(1):42-52. PubMed ID: 29322329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated bioprosthetic heart valve deformation under quasi-static loading.
    Sun W; Abad A; Sacks MS
    J Biomech Eng; 2005 Nov; 127(6):905-14. PubMed ID: 16438226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro ultrasound characterization of a polyurethane trileaflet valve.
    Stewart SF; Burté F; Eidbo E; Kolff WJ; Yu LS; Clark RE
    ASAIO Trans; 1990; 36(3):M532-5. PubMed ID: 2252743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of magnetic resonance imaging and Laser Doppler Anemometry velocity measurements downstream of replacement heart valves: implications for in vivo assessment of prosthetic valve function.
    Fontaine AA; Heinrich RS; Walker PG; Pedersen EM; Scheidegger MB; Boesiger P; Walton SP; Yoganathan AP
    J Heart Valve Dis; 1996 Jan; 5(1):66-73. PubMed ID: 8834728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle Based Simulation of the Aortic Valve by Considering Heart's Pulsation.
    Mukai N; Abe Y; Chang Y; Niki K; Takanashi S
    Stud Health Technol Inform; 2014; 196():285-9. PubMed ID: 24732523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.