These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23907850)
1. One site is enough: a theoretical investigation of iron-catalyzed dehydrogenation of formic Acid. Sánchez-de-Armas R; Xue L; Ahlquist MS Chemistry; 2013 Sep; 19(36):11869-73. PubMed ID: 23907850 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer. Yang X Dalton Trans; 2013 Sep; 42(33):11987-91. PubMed ID: 23846167 [TBL] [Abstract][Full Text] [Related]
3. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights. Mellmann D; Barsch E; Bauer M; Grabow K; Boddien A; Kammer A; Sponholz P; Bentrup U; Jackstell R; Junge H; Laurenczy G; Ludwig R; Beller M Chemistry; 2014 Oct; 20(42):13589-602. PubMed ID: 25196789 [TBL] [Abstract][Full Text] [Related]
4. Iron-catalyzed hydrogen production from formic acid. Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study. Sawatlon B; Surawatanawong P Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424 [TBL] [Abstract][Full Text] [Related]
6. Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine. Lu QQ; Yu HZ; Fu Y Chemistry; 2016 Mar; 22(13):4584-91. PubMed ID: 26879469 [TBL] [Abstract][Full Text] [Related]
7. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts. Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282 [TBL] [Abstract][Full Text] [Related]
9. Role of Ligand in the Selective Production of Hydrogen from Formic Acid Catalysed by the Mononuclear Cationic Zinc Complexes [(L)Zn(H)] Piacentino EL; Parker K; Gilbert TM; O'Hair RAJ; Ryzhov V Chemistry; 2019 Jul; 25(42):9959-9966. PubMed ID: 31090119 [TBL] [Abstract][Full Text] [Related]
10. On the Demise of PPP-Ligated Iron Catalysts in the Formic Acid Dehydrogenation Reaction. Pandey B; Krause JA; Guan H Inorg Chem; 2023 Nov; 62(45):18714-18723. PubMed ID: 37907063 [TBL] [Abstract][Full Text] [Related]
11. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid. Ge H; Jing Y; Yang X Inorg Chem; 2016 Dec; 55(23):12179-12184. PubMed ID: 27934414 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic studies of ammonia borane dehydrogenation catalyzed by iron pincer complexes. Bhattacharya P; Krause JA; Guan H J Am Chem Soc; 2014 Aug; 136(31):11153-61. PubMed ID: 25036653 [TBL] [Abstract][Full Text] [Related]
13. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules. Wang Y; Tang Y; Shao Y J Mol Graph Model; 2017 Sep; 76():521-534. PubMed ID: 28629707 [TBL] [Abstract][Full Text] [Related]
14. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis. Guan C; Pan Y; Zhang T; Ajitha MJ; Huang KW Chem Asian J; 2020 Apr; 15(7):937-946. PubMed ID: 32030903 [TBL] [Abstract][Full Text] [Related]
15. A theoretical study on the complete catalytic cycle of the hetero-Pauson-Khand-type [2+2+1] cycloaddition reaction of ketimines, carbon monoxide and ethylene catalyzed by iron carbonyl complexes. Imhof W; Anders E; Göbel A; Görls H Chemistry; 2003 Mar; 9(5):1166-81. PubMed ID: 12596153 [TBL] [Abstract][Full Text] [Related]
16. Iron Dihydride Complex Stabilized by an All-Phosphorus-Based Pincer Ligand and Carbon Monoxide. Pandey B; Krause JA; Guan H Inorg Chem; 2022 Jul; 61(29):11143-11155. PubMed ID: 35816559 [TBL] [Abstract][Full Text] [Related]
17. Density functional investigation of the water oxidation by iron complexes based on tetradentate nitrogen ligands. Kasapbasi EE; Whangbo MH Inorg Chem; 2012 Oct; 51(20):10850-5. PubMed ID: 23025899 [TBL] [Abstract][Full Text] [Related]
18. Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation. Urakawa A; Jutz F; Laurenczy G; Baiker A Chemistry; 2007; 13(14):3886-99. PubMed ID: 17294492 [TBL] [Abstract][Full Text] [Related]
19. Transition metal pincer catalysts for formic acid dehydrogenation: a mechanistic perspective. Kumar NS; Adhikary A Front Chem; 2024; 12():1452408. PubMed ID: 39257650 [TBL] [Abstract][Full Text] [Related]
20. Theoretical study on the mechanism of aqueous synthesis of formic acid catalyzed by [Ru3+]-EDTA complex. Chen ZN; Chan KY; Pulleri JK; Kong J; Hu H Inorg Chem; 2015 Feb; 54(4):1314-24. PubMed ID: 25646570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]