BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 23907934)

  • 1. Mangrove expansion and salt marsh decline at mangrove poleward limits.
    Saintilan N; Wilson NC; Rogers K; Rajkaran A; Krauss KW
    Glob Chang Biol; 2014 Jan; 20(1):147-57. PubMed ID: 23907934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.
    Guo H; Zhang Y; Lan Z; Pennings SC
    Glob Chang Biol; 2013 Sep; 19(9):2765-74. PubMed ID: 23580161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.
    Armitage AR; Highfield WE; Brody SD; Louchouarn P
    PLoS One; 2015; 10(5):e0125404. PubMed ID: 25946132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients.
    Osland MJ; Day RH; Hall CT; Brumfield MD; Dugas JL; Jones WR
    Ecology; 2017 Jan; 98(1):125-137. PubMed ID: 27935029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.
    Yando ES; Osland MJ; Hester MW
    Oecologia; 2018 May; 187(1):319-331. PubMed ID: 29497834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating physiological threshold experiments with climate modeling to project mangrove species' range expansion.
    Cavanaugh KC; Parker JD; Cook-Patton SC; Feller IC; Williams AP; Kellner JR
    Glob Chang Biol; 2015 May; 21(5):1928-38. PubMed ID: 25558057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands.
    Charles SP; Kominoski JS; Armitage AR; Guo H; Weaver CA; Pennings SC
    Ecology; 2020 Feb; 101(2):e02916. PubMed ID: 31646613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment.
    Weaver CA; Armitage AR
    PLoS One; 2018; 13(3):e0193617. PubMed ID: 29494657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A palynological record of mangrove biogeography, coastal geomorphological change, and prehistoric human activities from Cedar Keys, Florida, U.S.A.
    Yao Q; Liu KB; Rodrigues E; Fan D; Cohen M
    Sci Total Environ; 2023 Feb; 859(Pt 1):160189. PubMed ID: 36395834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mangrove growth response to experimental warming is greatest near the range limit in northeast Florida.
    Chapman SK; Feller IC; Canas G; Hayes MA; Dix N; Hester M; Morris J; Langley JA
    Ecology; 2021 Jun; 102(6):e03320. PubMed ID: 33665838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.
    Osland MJ; Enwright N; Day RH; Doyle TW
    Glob Chang Biol; 2013 May; 19(5):1482-94. PubMed ID: 23504931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events.
    Cavanaugh KC; Kellner JR; Forde AJ; Gruner DS; Parker JD; Rodriguez W; Feller IC
    Proc Natl Acad Sci U S A; 2014 Jan; 111(2):723-7. PubMed ID: 24379379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seventy years of continuous encroachment substantially increases 'blue carbon' capacity as mangroves replace intertidal salt marshes.
    Kelleway JJ; Saintilan N; Macreadie PI; Skilbeck CG; Zawadzki A; Ralph PJ
    Glob Chang Biol; 2016 Mar; 22(3):1097-109. PubMed ID: 26670941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacement of oyster reefs by mangroves: Unexpected climate-driven ecosystem shifts.
    McClenachan G; Witt M; Walters LJ
    Glob Chang Biol; 2021 Mar; 27(6):1226-1238. PubMed ID: 33342009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-glacial expansion and population genetic divergence of mangrove species Avicennia germinans (L.) Stearn and Rhizophora mangle L. along the Mexican coast.
    Sandoval-Castro E; Dodd RS; Riosmena-Rodríguez R; Enríquez-Paredes LM; Tovilla-Hernández C; López-Vivas JM; Aguilar-May B; Muñiz-Salazar R
    PLoS One; 2014; 9(4):e93358. PubMed ID: 24699389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.
    Osland MJ; Day RH; Larriviere JC; From AS
    PLoS One; 2014; 9(6):e99604. PubMed ID: 24971938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global potential distribution of mangroves: Taking into account salt marsh interactions along latitudinal gradients.
    Cui L; DeAngelis DL; Berger U; Cao M; Zhang Y; Zhang X; Jiang J
    J Environ Manage; 2024 Feb; 351():119892. PubMed ID: 38176380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species distribution and introgressive hybridization of two Avicennia species from the Western Hemisphere unveiled by phylogeographic patterns.
    Mori GM; Zucchi MI; Sampaio I; Souza AP
    BMC Evol Biol; 2015 Apr; 15():61. PubMed ID: 25886804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.
    Coldren GA; Barreto CR; Wykoff DD; Morrissey EM; Langley JA; Feller IC; Chapman SK
    Ecology; 2016 Nov; 97(11):3167-3175. PubMed ID: 27870028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.