BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 23908241)

  • 1. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection.
    Eskandarian HA; Impens F; Nahori MA; Soubigou G; Coppée JY; Cossart P; Hamon MA
    Science; 2013 Aug; 341(6145):1238858. PubMed ID: 23908241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infection Reveals a Modification of SIRT2 Critical for Chromatin Association.
    Pereira JM; Chevalier C; Chaze T; Gianetto Q; Impens F; Matondo M; Cossart P; Hamon MA
    Cell Rep; 2018 Apr; 23(4):1124-1137. PubMed ID: 29694890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone H3 deacetylation promotes host cell viability for efficient infection by Listeria monocytogenes.
    Eldridge MJG; Hamon MA
    PLoS Pathog; 2021 Dec; 17(12):e1010173. PubMed ID: 34929015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulation of Sirtuin 2 (SIRT2) and histone H3K18 acetylation pathways associates with adverse prostate cancer outcomes.
    Damodaran S; Damaschke N; Gawdzik J; Yang B; Shi C; Allen GO; Huang W; Denu J; Jarrard D
    BMC Cancer; 2017 Dec; 17(1):874. PubMed ID: 29262808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species specificity of the Listeria monocytogenes InlB protein.
    Khelef N; Lecuit M; Bierne H; Cossart P
    Cell Microbiol; 2006 Mar; 8(3):457-70. PubMed ID: 16469057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active nuclear import of the deacetylase Sirtuin-2 is controlled by its C-terminus and importins.
    Eldridge MJG; Pereira JM; Impens F; Hamon MA
    Sci Rep; 2020 Feb; 10(1):2034. PubMed ID: 32042025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.
    Yu J; Wu Y; Yang P
    J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIRT2 regulates NF-κB dependent gene expression through deacetylation of p65 Lys310.
    Rothgiesser KM; Erener S; Waibel S; Lüscher B; Hottiger MO
    J Cell Sci; 2010 Dec; 123(Pt 24):4251-8. PubMed ID: 21081649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SIRT2 deacetylase regulates autoacetylation of p300.
    Black JC; Mosley A; Kitada T; Washburn M; Carey M
    Mol Cell; 2008 Nov; 32(3):449-55. PubMed ID: 18995842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone modifications induced by a family of bacterial toxins.
    Hamon MA; Batsché E; Régnault B; Tham TN; Seveau S; Muchardt C; Cossart P
    Proc Natl Acad Sci U S A; 2007 Aug; 104(33):13467-72. PubMed ID: 17675409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation.
    Serrano L; Martínez-Redondo P; Marazuela-Duque A; Vazquez BN; Dooley SJ; Voigt P; Beck DB; Kane-Goldsmith N; Tong Q; Rabanal RM; Fondevila D; Muñoz P; Krüger M; Tischfield JA; Vaquero A
    Genes Dev; 2013 Mar; 27(6):639-53. PubMed ID: 23468428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Dysregulated Epigenetic Enzyme Activity in Castrate-Resistant Prostate Cancer Development.
    Lee JH; Yang B; Lindahl AJ; Damaschke N; Boersma MD; Huang W; Corey E; Jarrard DF; Denu JM
    ACS Chem Biol; 2017 Nov; 12(11):2804-2814. PubMed ID: 28949514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH
    Sarikhani M; Mishra S; Desingu PA; Kotyada C; Wolfgeher D; Gupta MP; Singh M; Sundaresan NR
    Cell Death Differ; 2018 Sep; 25(9):1638-1656. PubMed ID: 29449643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redundant roles for Met docking site tyrosines and the Gab1 pleckstrin homology domain in InlB-mediated entry of Listeria monocytogenes.
    Basar T; Shen Y; Ireton K
    Infect Immun; 2005 Apr; 73(4):2061-74. PubMed ID: 15784547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogenic Biohacking: Induction, Modulation and Subversion of Host Transcriptional Responses by
    Eldridge MJG; Cossart P; Hamon MA
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32380645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of H3K18 deacetylation of Sirt7 by Myb-binding protein 1a (Mybbp1a).
    Karim MF; Yoshizawa T; Sato Y; Sawa T; Tomizawa K; Akaike T; Yamagata K
    Biochem Biophys Res Commun; 2013 Nov; 441(1):157-63. PubMed ID: 24134843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for host cell exocytosis in InlB-mediated internalisation of Listeria monocytogenes.
    Van Ngo H; Bhalla M; Chen DY; Ireton K
    Cell Microbiol; 2017 Nov; 19(11):. PubMed ID: 28745416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone Ketoamide Adduction by 4-Oxo-2-nonenal Is a Reversible Posttranslational Modification Regulated by Sirt2.
    Cui Y; Li X; Lin J; Hao Q; Li XD
    ACS Chem Biol; 2017 Jan; 12(1):47-51. PubMed ID: 28103679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GW domains of the Listeria monocytogenes invasion protein InlB are required for potentiation of Met activation.
    Banerjee M; Copp J; Vuga D; Marino M; Chapman T; van der Geer P; Ghosh P
    Mol Microbiol; 2004 Apr; 52(1):257-71. PubMed ID: 15049825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Met, the HGF-SF receptor: another receptor for Listeria monocytogenes.
    Cossart P
    Trends Microbiol; 2001 Mar; 9(3):105-7. PubMed ID: 11239771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.