These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23908359)

  • 1. X-ray crystallographic evidence for the presence of the cysteine tryptophylquinone cofactor in L-lysine ε-oxidase from Marinomonas mediterranea.
    Okazaki S; Nakano S; Matsui D; Akaji S; Inagaki K; Asano Y
    J Biochem; 2013 Sep; 154(3):233-6. PubMed ID: 23908359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of recombinant biosynthetic precursors of the cysteine tryptophylquinone cofactors of l-lysine-epsilon-oxidase and glycine oxidase from Marinomonas mediterranea.
    Chacón-Verdú MD; Campillo-Brocal JC; Lucas-Elío P; Davidson VL; Sánchez-Amat A
    Biochim Biophys Acta; 2015 Sep; 1854(9):1123-31. PubMed ID: 25542375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state kinetic mechanism of LodA, a novel cysteine tryptophylquinone-dependent oxidase.
    Sehanobish E; Shin S; Sanchez-Amat A; Davidson VL
    FEBS Lett; 2014 Mar; 588(5):752-6. PubMed ID: 24462691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of GoxA with Its Modifying Enzyme and Its Subunit Assembly Are Dependent on the Extent of Cysteine Tryptophylquinone Biosynthesis.
    Sehanobish E; Campillo-Brocal JC; Williamson HR; Sanchez-Amat A; Davidson VL
    Biochemistry; 2016 Apr; 55(16):2305-8. PubMed ID: 27064961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and structural evidence that Asp-678 plays multiple roles in catalysis by the quinoprotein glycine oxidase.
    Mamounis KJ; Avalos D; Yukl ET; Davidson VL
    J Biol Chem; 2019 Nov; 294(46):17463-17470. PubMed ID: 31615898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LodB is required for the recombinant synthesis of the quinoprotein L-lysine-ε-oxidase from Marinomonas mediterranea.
    Chacón-Verdú MD; Gómez D; Solano F; Lucas-Elío P; Sánchez-Amat A
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):2981-9. PubMed ID: 23955504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of Copper and a Conserved Aspartic Acid in the Autocatalytic Hydroxylation of a Specific Tryptophan Residue during Cysteine Tryptophylquinone Biogenesis.
    Williamson HR; Sehanobish E; Shiller AM; Sanchez-Amat A; Davidson VL
    Biochemistry; 2017 Feb; 56(7):997-1004. PubMed ID: 28140566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of plasma and serum L-lysine using L-lysine epsilon-oxidase from Marinomonas mediterranea NBRC 103028(T).
    Matsuda M; Asano Y
    Anal Biochem; 2010 Nov; 406(1):19-23. PubMed ID: 20599635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel type of lysine oxidase: L-lysine-epsilon-oxidase.
    Gómez D; Lucas-Elío P; Sanchez-Amat A; Solano F
    Biochim Biophys Acta; 2006 Oct; 1764(10):1577-85. PubMed ID: 17030025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Redox Properties of a Cysteine Tryptophylquinone-Dependent Glycine Oxidase Are Distinct from Those of Tryptophylquinone-Dependent Dehydrogenases.
    Ma Z; Davidson VL
    Biochemistry; 2019 Apr; 58(17):2243-2249. PubMed ID: 30945853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous production of L-lysine ε-oxidase by directed evolution using a fusion reporter method.
    Matsui D; Asano Y
    Biosci Biotechnol Biochem; 2015; 79(9):1473-80. PubMed ID: 25896319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of Conserved Residues of the Glycine Oxidase GoxA in Controlling Activity, Cooperativity, Subunit Composition, and Cysteine Tryptophylquinone Biosynthesis.
    Sehanobish E; Williamson HR; Davidson VL
    J Biol Chem; 2016 Oct; 291(44):23199-23207. PubMed ID: 27637328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Enzymatic Properties of an Unusual Cysteine Tryptophylquinone-Dependent Glycine Oxidase from Pseudoalteromonas luteoviolacea.
    Andreo-Vidal A; Mamounis KJ; Sehanobish E; Avalos D; Campillo-Brocal JC; Sanchez-Amat A; Yukl ET; Davidson VL
    Biochemistry; 2018 Feb; 57(7):1155-1165. PubMed ID: 29381339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution X-ray crystal structures of L-phenylalanine oxidase (deaminating and decarboxylating) from Pseudomonas sp. P-501. Structures of the enzyme-ligand complex and catalytic mechanism.
    Ida K; Suguro M; Suzuki H
    J Biochem; 2011 Dec; 150(6):659-69. PubMed ID: 21841183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Spectroscopic Characterization of a Product Schiff Base Intermediate in the Reaction of the Quinoprotein Glycine Oxidase, GoxA.
    Avalos D; Sabuncu S; Mamounis KJ; Davidson VL; Moënne-Loccoz P; Yukl ET
    Biochemistry; 2019 Feb; 58(6):706-713. PubMed ID: 30605596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and structural characterization of a flavoprotein monooxygenase essential for biogenesis of tryptophylquinone cofactor.
    Oozeki T; Nakai T; Kozakai K; Okamoto K; Kuroda S; Kobayashi K; Tanizawa K; Okajima T
    Nat Commun; 2021 Feb; 12(1):933. PubMed ID: 33568660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions.
    Davidson VL
    Biochemistry; 2018 Jun; 57(22):3115-3125. PubMed ID: 29498828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of active site residues in LodA, a cysteine tryptophylquinone dependent ε-lysine oxidase.
    Sehanobish E; Chacón-Verdú MD; Sanchez-Amat A; Davidson VL
    Arch Biochem Biophys; 2015 Aug; 579():26-32. PubMed ID: 26048732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of quinohemoprotein amine dehydrogenase from Pseudomonas putida. Identification of a novel quinone cofactor encaged by multiple thioether cross-bridges.
    Satoh A; Kim JK; Miyahara I; Devreese B; Vandenberghe I; Hacisalihoglu A; Okajima T; Kuroda S; Adachi O; Duine JA; Van Beeumen J; Tanizawa K; Hirotsu K
    J Biol Chem; 2002 Jan; 277(4):2830-4. PubMed ID: 11704672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and kinetic reaction mechanisms of quinohemoprotein amine dehydrogenase from Paracoccus denitrificans.
    Sun D; Ono K; Okajima T; Tanizawa K; Uchida M; Yamamoto Y; Mathews FS; Davidson VL
    Biochemistry; 2003 Sep; 42(37):10896-903. PubMed ID: 12974623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.