These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 239086)

  • 1. The relationship between transepithelial sodium movement and potential difference in the larva of Camptochironomus tentans (Fabr.) and some observations on the accumulation of other ions.
    Wright DA
    J Exp Biol; 1975 Feb; 62(1):157-74. PubMed ID: 239086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of enternal sodium concentration upon sodium fluxes in Chironomus dorsalis (Meig.) and Camptochironomus tentans (Fabr.), and the effect of other ions on sodium influx in C. tentans.
    Wright DA
    J Exp Biol; 1975 Feb; 62(1):141-55. PubMed ID: 239085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium regulation in the larvae of Chironomus dorsalis (Meig.) and Camptochironomus tentans (Fabr.): the effect of slat depletion and some observations on temperature changes.
    Wright DA
    J Exp Biol; 1975 Feb; 62(1):121-39. PubMed ID: 239084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations.
    Rang HP; Ritchie JM
    J Physiol; 1968 May; 196(1):183-221. PubMed ID: 5653884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake.
    Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL
    Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion regulatory patterns of mosquito larvae collected from breeding sites in the Amazon rain forest.
    Patrick ML; Ferreira RL; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL
    Physiol Biochem Zool; 2002; 75(3):215-22. PubMed ID: 12177825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transepithelial potential in the Magadi tilapia, a fish living in extreme alkalinity.
    Wood CM; Bergman HL; Bianchini A; Laurent P; Maina J; Johannsson OE; Bianchini LF; Chevalier C; Kavembe GD; Papah MB; Ojoo RO
    J Comp Physiol B; 2012 Feb; 182(2):247-58. PubMed ID: 21912898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of some anions and cations upon the fluxes and net uptake of chloride in the larva of AĆ«des aegypti (L.), and the nature of the uptake mechanisms for sodium and chloride.
    Stobbart RH
    J Exp Biol; 1967 Aug; 47(1):35-57. PubMed ID: 6058980
    [No Abstract]   [Full Text] [Related]  

  • 9. The influence of the chloride gradient across red cell membranes on sodium and potassium movements.
    Cotterrell D; Whittam R
    J Physiol; 1971 May; 214(3):509-36. PubMed ID: 4996368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of external cation and anion substitutions on sodium transport in isolated frog skin.
    Biber TU; Mullen TL
    J Membr Biol; 1980; 52(2):121-32. PubMed ID: 6965988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.
    Berry CA; Rector FC
    Semin Nephrol; 1991 Mar; 11(2):86-97. PubMed ID: 2034928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active transport and exchange diffusion of Cl across the isolated skin of Rana pipiens.
    Drewnowska K; Biber TU
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F424-31. PubMed ID: 3876034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active ion transport in the larval hindgut of Sarcophaga bullata (Diptera: Sarcophagidae).
    Prusch RD
    J Exp Biol; 1974 Aug; 61(1):95-109. PubMed ID: 4411835
    [No Abstract]   [Full Text] [Related]  

  • 14. Ionic transport and membrane potential of rat liver cells in normal and low-chloride solutions.
    Claret B; Claret M; Mazet JL
    J Physiol; 1973 Apr; 230(1):87-101. PubMed ID: 4702455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen transport in papillary collecting duct of rabbit kidney.
    Prigent A; Bichara M; Paillard M
    Am J Physiol; 1985 Mar; 248(3 Pt 1):C241-6. PubMed ID: 2579570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unidirectional ion movements in the hindgut of larval Sarcophaga bullata (Diptera: Sarcophagidae).
    Prusch RD
    J Exp Biol; 1976 Feb; 64(1):89-100. PubMed ID: 1270996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum.
    Turnberg LA; Bieberdorf FA; Morawski SG; Fordtran JS
    J Clin Invest; 1970 Mar; 49(3):557-67. PubMed ID: 5415682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical effects of transmembrane electroneutral exchange on membrane potential.
    Jacob R; Piwnica-Worms D; Horres CR; Lieberman M
    J Gen Physiol; 1984 Jan; 83(1):47-56. PubMed ID: 6319544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pancreatic islet cells: electrogenic and electrodiffusional control of membrane potential.
    Mattews EK; Sakamoto Y
    J Physiol; 1975 Mar; 246(2):439-57. PubMed ID: 1095721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of external salinity on drinking rate and rectal secretion in the larvae of the saline-water mosquito Aedes taeniorhynchus.
    Bradley TJ; Phillips JE
    J Exp Biol; 1977 Feb; 66(1):97-110. PubMed ID: 858994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.