These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 23908819)

  • 21. Developmental Programming of Renal Function and Re-Programming Approaches.
    Nüsken E; Dötsch J; Weber LT; Nüsken KD
    Front Pediatr; 2018; 6():36. PubMed ID: 29535992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compensatory growth of congenital solitary kidneys in pigs reflects increased nephron numbers rather than hypertrophy.
    van Vuuren SH; Sol CM; Broekhuizen R; Lilien MR; Oosterveld MJ; Nguyen TQ; Goldschmeding R; de Jong TP
    PLoS One; 2012; 7(11):e49735. PubMed ID: 23185419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preterm Birth and its Impact on Renal Health.
    Luyckx VA
    Semin Nephrol; 2017 Jul; 37(4):311-319. PubMed ID: 28711069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Case report: increased single-nephron estimated glomerular filtration rate in an adult patient with low birth weight.
    Shiozaki Y; Fujikura T; Isobe S; Takatsuka I; Sato T; Goto D; Ishigaki S; Ohashi N; Yasuda H
    BMC Nephrol; 2020 Mar; 21(1):75. PubMed ID: 32126967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Birth Weight and Susceptibility to Chronic Kidney Disease.
    Al Salmi I; Hannawi S
    Saudi J Kidney Dis Transpl; 2020; 31(4):717-726. PubMed ID: 32801232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The magnitude of nephron number reduction mediates intrauterine growth-restriction-induced long term chronic renal disease in the rat. A comparative study in two experimental models.
    Boubred F; Daniel L; Buffat C; Tsimaratos M; Oliver C; Lelièvre-Pégorier M; Simeoni U
    J Transl Med; 2016 Nov; 14(1):331. PubMed ID: 27899104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-salt diet reveals the hypertensive and renal effects of reduced nephron endowment.
    Ruta LA; Dickinson H; Thomas MC; Denton KM; Anderson WP; Kett MM
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1384-92. PubMed ID: 20335316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model.
    Wang X; Johnson AC; Williams JM; White T; Chade AR; Zhang J; Liu R; Roman RJ; Lee JW; Kyle PB; Solberg-Woods L; Garrett MR
    J Am Soc Nephrol; 2015 Jul; 26(7):1634-46. PubMed ID: 25349207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prematurity in mice leads to reduction in nephron number, hypertension, and proteinuria.
    Stelloh C; Allen KP; Mattson DL; Lerch-Gaggl A; Reddy S; El-Meanawy A
    Transl Res; 2012 Feb; 159(2):80-9. PubMed ID: 22243792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developmental origins of chronic renal disease: an integrative hypothesis.
    Boubred F; Saint-Faust M; Buffat C; Ligi I; Grandvuillemin I; Simeoni U
    Int J Nephrol; 2013; 2013():346067. PubMed ID: 24073334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat.
    Wlodek ME; Mibus A; Tan A; Siebel AL; Owens JA; Moritz KM
    J Am Soc Nephrol; 2007 Jun; 18(6):1688-96. PubMed ID: 17442788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The long-term renal and cardiovascular consequences of prematurity.
    Abitbol CL; Rodriguez MM
    Nat Rev Nephrol; 2012 Feb; 8(5):265-74. PubMed ID: 22371245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nephron adaptation to renal injury or ablation.
    Brenner BM
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F324-37. PubMed ID: 3898871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adverse consequences of accelerated neonatal growth: cardiovascular and renal issues.
    Simeoni U; Ligi I; Buffat C; Boubred F
    Pediatr Nephrol; 2011 Apr; 26(4):493-508. PubMed ID: 20938692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrauterine growth restriction reduces nephron number and renal excretory function in newborn piglets.
    Bauer R; Walter B; Bauer K; Klupsch R; Patt S; Zwiener U
    Acta Physiol Scand; 2002 Oct; 176(2):83-90. PubMed ID: 12354166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nephron number and renal risk in hypertension and diabetes.
    Gross ML; Amann K; Ritz E
    J Am Soc Nephrol; 2005 Mar; 16 Suppl 1():S27-9. PubMed ID: 15938029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developmental programming of a reduced nephron endowment: more than just a baby's birth weight.
    Moritz KM; Singh RR; Probyn ME; Denton KM
    Am J Physiol Renal Physiol; 2009 Jan; 296(1):F1-9. PubMed ID: 18653482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changing Protein Permeability with Nephron Loss: Evidence for a Human Remnant Nephron Effect.
    Willows J; Odudu A; Logan I; Sheerin N; Tomson C; Ellam T
    Am J Nephrol; 2019; 50(2):152-159. PubMed ID: 31269482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the kidney in the prenatal and early postnatal programming of hypertension.
    Baum M
    Am J Physiol Renal Physiol; 2010 Feb; 298(2):F235-47. PubMed ID: 19794108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The etiology of adult hypertension and progressive renal injury: an hypothesis.
    Brenner BM
    Bull Mem Acad R Med Belg; 1994; 149(1-2):121-5; discussion 125-7. PubMed ID: 7841922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.