These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23908970)

  • 1. Compartment model predicts VEGF secretion and investigates the effects of VEGF trap in tumor-bearing mice.
    Finley SD; Dhar M; Popel AS
    Front Oncol; 2013; 3():196. PubMed ID: 23908970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies.
    Finley SD; Engel-Stefanini MO; Imoukhuede PI; Popel AS
    BMC Syst Biol; 2011 Nov; 5():193. PubMed ID: 22104283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-compartment model of VEGF distribution in the mouse.
    Yen P; Finley SD; Engel-Stefanini MO; Popel AS
    PLoS One; 2011; 6(11):e27514. PubMed ID: 22087332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compartment model of VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap.
    Wu FT; Stefanini MO; Mac Gabhann F; Popel AS
    PLoS One; 2009; 4(4):e5108. PubMed ID: 19352513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic modeling quantifies the influence of tumor growth kinetics on the response to anti-angiogenic treatment.
    Gaddy TD; Wu Q; Arnheim AD; Finley SD
    PLoS Comput Biol; 2017 Dec; 13(12):e1005874. PubMed ID: 29267273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of tumor microenvironment on tumor VEGF during anti-VEGF treatment: systems biology predictions.
    Finley SD; Popel AS
    J Natl Cancer Inst; 2013 Jun; 105(11):802-11. PubMed ID: 23670728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome.
    Stalmans I
    Verh K Acad Geneeskd Belg; 2005; 67(4):229-76. PubMed ID: 16334858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF
    Chu LH; Ganta VC; Choi MH; Chen G; Finley SD; Annex BH; Popel AS
    Sci Rep; 2016 Nov; 6():37030. PubMed ID: 27853189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the effects of anti-angiogenic agents targeting specific VEGF isoforms.
    Finley SD; Popel AS
    AAPS J; 2012 Sep; 14(3):500-9. PubMed ID: 22547351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational kinetic model of VEGF trapping by soluble VEGF receptor-1: effects of transendothelial and lymphatic macromolecular transport.
    Wu FT; Stefanini MO; Mac Gabhann F; Kontos CD; Annex BH; Popel AS
    Physiol Genomics; 2009 Jun; 38(1):29-41. PubMed ID: 19351908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of potent VEGF blockade on experimental Wilms tumor and its persisting vasculature.
    Frischer JS; Huang J; Serur A; Kadenhe-Chiweshe A; McCrudden KW; O'Toole K; Holash J; Yancopoulos GD; Yamashiro DJ; Kandel JJ
    Int J Oncol; 2004 Sep; 25(3):549-53. PubMed ID: 15289855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model.
    Wu FT; Stefanini MO; Mac Gabhann F; Kontos CD; Annex BH; Popel AS
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H2174-91. PubMed ID: 20382861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The presence of VEGF receptors on the luminal surface of endothelial cells affects VEGF distribution and VEGF signaling.
    Stefanini MO; Wu FT; Mac Gabhann F; Popel AS
    PLoS Comput Biol; 2009 Dec; 5(12):e1000622. PubMed ID: 20041209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoglobulin Fc-fused, neuropilin-1-specific peptide shows efficient tumor tissue penetration and inhibits tumor growth via anti-angiogenesis.
    Kim YJ; Bae J; Shin TH; Kang SH; Jeong M; Han Y; Park JH; Kim SK; Kim YS
    J Control Release; 2015 Oct; 216():56-68. PubMed ID: 26260451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting neuropilin-1 to inhibit VEGF signaling in cancer: Comparison of therapeutic approaches.
    Mac Gabhann F; Popel AS
    PLoS Comput Biol; 2006 Dec; 2(12):e180. PubMed ID: 17196035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy.
    Shinkaruk S; Bayle M; Laïn G; Déléris G
    Curr Med Chem Anticancer Agents; 2003 Mar; 3(2):95-117. PubMed ID: 12678905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A compartment model of VEGF distribution in blood, healthy and diseased tissues.
    Stefanini MO; Wu FT; Mac Gabhann F; Popel AS
    BMC Syst Biol; 2008 Aug; 2():77. PubMed ID: 18713470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of VEGF isoforms and VEGF(164)-specific receptor neuropilin-1 in the mouse uterus suggests a role for VEGF(164) in vascular permeability and angiogenesis during implantation.
    Halder JB; Zhao X; Soker S; Paria BC; Klagsbrun M; Das SK; Dey SK
    Genesis; 2000 Mar; 26(3):213-24. PubMed ID: 10705382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VEGF but not PlGF disturbs the barrier of retinal endothelial cells.
    Deissler HL; Deissler H; Lang GK; Lang GE
    Exp Eye Res; 2013 Oct; 115():162-71. PubMed ID: 23891860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational analysis of pro-angiogenic therapies for peripheral artery disease.
    Clegg LE; Mac Gabhann F
    Integr Biol (Camb); 2018 Jan; 10(1):18-33. PubMed ID: 29327758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.