These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23909298)

  • 1. Time-domain measurements of reflection delay in frustrated total internal reflection.
    Gehring GM; Liapis AC; Lukishova SG; Boyd RW
    Phys Rev Lett; 2013 Jul; 111(3):030404. PubMed ID: 23909298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring optical tunneling times using a Hong-Ou-Mandel interferometer.
    Papoular DJ; Cladé P; Polyakov SV; McCormick CF; Migdall AL; Lett PD
    Opt Express; 2008 Sep; 16(20):16005-12. PubMed ID: 18825239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift in a frustrated total internal reflection configuration.
    Chen Y; Ban Y; Zhu QB; Chen X
    Opt Lett; 2016 Oct; 41(19):4468-4471. PubMed ID: 27749857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frustrated total reflection: the double-prism revisited.
    Haibel A; Nimtz G; Stahlhofen AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047601. PubMed ID: 11308988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration.
    Broe J; Keller O
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1212-22. PubMed ID: 12049360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy flux and Goos-Hänchen shift in frustrated total internal reflection.
    Chen X; Lu XJ; Zhao PL; Zhu QB
    Opt Lett; 2012 May; 37(9):1526-8. PubMed ID: 22555726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct experimental observation of giant Goos-Hänchen shifts from bandgap-enhanced total internal reflection.
    Wan Y; Zheng Z; Kong W; Liu Y; Lu Z; Bian Y
    Opt Lett; 2011 Sep; 36(18):3539-41. PubMed ID: 21931383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos-Hänchen effect.
    Shaarawi AM; Tawfik BH; Besieris IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046626. PubMed ID: 12443368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong enhancement of Goos-Hänchen shift through the resonant optical tunneling effect.
    Xiang L; Liu W; Wei Z; Meng H; Liu H; Guo J; Zhi Y; Huang Z; Li H; Wang F
    Opt Express; 2022 Dec; 30(26):47338-47349. PubMed ID: 36558664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collinear heterodyne interferometer technique for measuring Goos-Hänchen shift.
    Zhang W; Zhang Z
    Appl Opt; 2018 Nov; 57(31):9346-9350. PubMed ID: 30461974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution to causality paradox upon total reflection in optical planar waveguide.
    Liu X; Cao Z; Zhu P; Shen Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016615. PubMed ID: 16486303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of the Goos-Hänchen shift with neutrons.
    de Haan VO; Plomp J; Rekveldt TM; Kraan WH; van Well AA; Dalgliesh RM; Langridge S
    Phys Rev Lett; 2010 Jan; 104(1):010401. PubMed ID: 20366352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of the wigner delay associated with the goos-Hanchen effect.
    Chauvat D; Emile O; Bretenaker F; Le Floch A
    Phys Rev Lett; 2000 Jan; 84(1):71-4. PubMed ID: 11015837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time delay associated with total reflection of a plane wave upon plasma mirror.
    Liu X; Cao Z; Zhu P; Shen Q
    Opt Express; 2006 Apr; 14(8):3588-93. PubMed ID: 19516505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral shifts and photon tunneling in a frustrated total internal reflection structure with a negative-zero-positive index metamaterial.
    Wang X; Shen M; Jiang A; Zheng F
    Opt Lett; 2013 Oct; 38(19):3949-52. PubMed ID: 24081096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of the displacement of a three-dimensional Gaussian beam transmitted at total internal reflection. Near-field applications.
    Baida FI; Van Labeke D; Vigoureux JM
    Appl Opt; 1978 Mar; 17(5):858-66. PubMed ID: 20197882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurement of the negative Goos-Hänchen shift of single reflection in a two-dimensional photonic crystal with negative refractive index.
    Jiang Q; Chen J; Liang B; Wang Y; Hu J; Zhuang S
    Opt Lett; 2017 Apr; 42(7):1213-1216. PubMed ID: 28362732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Goos-Hänchen shift in negatively refractive media.
    Berman PR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):067603. PubMed ID: 12513451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration.
    Li CF; Wang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):055601. PubMed ID: 15244873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical expression of giant Goos-Hänchen shift in terms of proper and improper modes in waveguide structures with arbitrary refractive index profile.
    Alishahi F; Mehrany K
    Opt Lett; 2010 Jun; 35(11):1759-61. PubMed ID: 20517407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.