These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23909323)

  • 1. Cancellation of internal quantum noise of an amplifier by quantum correlation.
    Kong J; Hudelist F; Ou ZY; Zhang W
    Phys Rev Lett; 2013 Jul; 111(3):033608. PubMed ID: 23909323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum information tapping using a fiber optical parametric amplifier with noise figure improved by correlated inputs.
    Guo X; Li X; Liu N; Ou ZY
    Sci Rep; 2016 Jul; 6():30214. PubMed ID: 27458089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-dB signal-ASE beat noise reduction of coherent multi-carrier signal utilizing phase sensitive amplification.
    Umeki T; Takara H; Miyamoto Y; Asobe M
    Opt Express; 2012 Oct; 20(22):24727-34. PubMed ID: 23187236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-noise and high-gain of stimulated Brillouin amplification via orbital angular momentum mode division filtering.
    Sheng L; Ba D; Lu Z
    Appl Opt; 2019 Jan; 58(1):147-151. PubMed ID: 30645521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a nondeterministic optical noiseless amplifier.
    Ferreyrol F; Barbieri M; Blandino R; Fossier S; Tualle-Brouri R; Grangier P
    Phys Rev Lett; 2010 Mar; 104(12):123603. PubMed ID: 20366532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-noise amplification of a continuous-variable quantum state.
    Pooser RC; Marino AM; Boyer V; Jones KM; Lett PD
    Phys Rev Lett; 2009 Jul; 103(1):010501. PubMed ID: 19659129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of quantum-noise correlations in parametric image amplification.
    Marable M; Choi SK; Kumar P
    Opt Express; 1998 Feb; 2(3):84-92. PubMed ID: 19377584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squeezed amplification in a nondegenerate parametric amplifier.
    Wong NC
    Opt Lett; 1991 Nov; 16(21):1698-700. PubMed ID: 19784113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First demonstration of high-order QAM signal amplification in PPLN-based phase sensitive amplifier.
    Umeki T; Tadanaga O; Asobe M; Miyamoto Y; Takenouchi H
    Opt Express; 2014 Feb; 22(3):2473-82. PubMed ID: 24663539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise in phase-(in)sensitive dual-core fiber parametric amplification.
    Ribeiro V; Lorences-Riesgo A; Andrekson P; Karlsson M
    Opt Express; 2018 Feb; 26(4):4050-4059. PubMed ID: 29475260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers.
    Friis SM; Rottwitt K; McKinstrie CJ
    Opt Express; 2013 Dec; 21(24):29320-31. PubMed ID: 24514485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase sensitive amplification with noise figure below the 3 dB quantum limit using CW pumped PPLN waveguide.
    Asobe M; Umeki T; Tadanaga O
    Opt Express; 2012 Jun; 20(12):13164-72. PubMed ID: 22714344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and measurement of the noise figure of a cascaded non-degenerate phase-sensitive parametric amplifier.
    Tong Z; Bogris A; Lundström C; McKinstrie CJ; Vasilyev M; Karlsson M; Andrekson PA
    Opt Express; 2010 Jul; 18(14):14820-35. PubMed ID: 20639969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An energy-efficient micropower neural recording amplifier.
    Wattanapanitch W; Fee M; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2007 Jun; 1(2):136-47. PubMed ID: 23851668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GHz bandwidth noise eater hybrid optical amplifier: design guidelines.
    Danion G; Bondu F; Loas G; Alouini M
    Opt Lett; 2014 Jul; 39(14):4239-42. PubMed ID: 25121696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A PbS quantum dots fiber amplifier excited by evanescent wave.
    Pang F; Sun X; Guo H; Yan J; Wang J; Zeng X; Chen Z; Wang T
    Opt Express; 2010 Jun; 18(13):14024-30. PubMed ID: 20588534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization improvement of the squeezed optical fields using a high signal-to-noise ratio bootstrap photodetector.
    Wang X; Wu L; Liang S; Cheng J; Liu Y; Zhou Y; Qin J; Yan Z; Jia X
    Opt Express; 2022 Dec; 30(26):47826-47835. PubMed ID: 36558701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum noise limits on frequency and timing for optical pulses in a linear high-gain amplifier.
    Kozlov VV
    Opt Lett; 2002 Oct; 27(19):1723-5. PubMed ID: 18033348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier.
    Meuer C; Schmidt-Langhorst C; Schmeckebier H; Fiol G; Arsenijević D; Schubert C; Bimberg D
    Opt Express; 2011 Feb; 19(4):3788-98. PubMed ID: 21369203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical characterization of InP-based quantum dot semiconductor optical amplifier.
    Nawwar OM; Emara A; Aly MH; Okaz AM
    Appl Opt; 2016 Dec; 55(35):9978-9985. PubMed ID: 27958400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.