BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23909410)

  • 1. Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-dioxane.
    Li M; Mathieu J; Yang Y; Fiorenza S; Deng Y; He Z; Zhou J; Alvarez PJ
    Environ Sci Technol; 2013 Sep; 47(17):9950-8. PubMed ID: 23909410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes.
    He Y; Mathieu J; da Silva MLB; Li M; Alvarez PJJ
    Microb Biotechnol; 2018 Jan; 11(1):189-198. PubMed ID: 28984418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments.
    Coleman NV; Bui NB; Holmes AJ
    Environ Microbiol; 2006 Jul; 8(7):1228-39. PubMed ID: 16817931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples.
    Li M; Fiorenza S; Chatham JR; Mahendra S; Alvarez PJ
    Water Res; 2010 May; 44(9):2894-900. PubMed ID: 20199795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula.
    Ramalingam V; Cupples AM
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2255-2269. PubMed ID: 31956944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Kinetic Characteristics of 1,4-Dioxane-Degrading Bacterial Consortia Containing the Phylum TM7.
    Nam JH; Ventura JS; Yeom IT; Lee Y; Jahng D
    J Microbiol Biotechnol; 2016 Nov; 26(11):1951-1964. PubMed ID: 27470275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus.
    Inoue D; Tsunoda T; Sawada K; Yamamoto N; Saito Y; Sei K; Ike M
    Biodegradation; 2016 Nov; 27(4-6):277-286. PubMed ID: 27623820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Horizontal Gene Transfer of Genes Encoding Copper-Containing Membrane-Bound Monooxygenase (CuMMO) and Soluble Di-iron Monooxygenase (SDIMO) in Ethane- and Propane-Oxidizing
    Zou B; Huang Y; Zhang PP; Ding XM; Op den Camp HJM; Quan ZX
    Appl Environ Microbiol; 2021 Jun; 87(14):e0022721. PubMed ID: 33962978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478.
    Masuda H; McClay K; Steffan RJ; Zylstra GJ
    J Mol Microbiol Biotechnol; 2012; 22(5):312-6. PubMed ID: 23147387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular approach to evaluate biostimulation of 1,2-dibromoethane in contaminated groundwater.
    Baek K; McKeever R; Rieber K; Sheppard D; Park C; Ergas SJ; Nüsslein K
    Bioresour Technol; 2012 Nov; 123():207-13. PubMed ID: 22940321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulatory and inhibitory effects of metals on 1,4-dioxane degradation by four different 1,4-dioxane-degrading bacteria.
    Inoue D; Tsunoda T; Sawada K; Yamamoto N; Sei K; Ike M
    Chemosphere; 2020 Jan; 238():124606. PubMed ID: 31446278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California.
    Li M; Van Orden ET; DeVries DJ; Xiong Z; Hinchee R; Alvarez PJ
    Biodegradation; 2015 Feb; 26(1):39-50. PubMed ID: 25280838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation.
    Xiong Y; Mason OU; Lowe A; Zhou C; Chen G; Tang Y
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.
    Hand S; Wang B; Chu KH
    Sci Total Environ; 2015 Jul; 520():154-9. PubMed ID: 25813968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range.
    Li F; Deng D; Li M
    Environ Sci Technol; 2020 Feb; 54(3):1898-1908. PubMed ID: 31877031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary ecology and multidisciplinary approaches to prospecting for monooxygenases as biocatalysts.
    Holmes AJ; Coleman NV
    Antonie Van Leeuwenhoek; 2008 Jun; 94(1):75-84. PubMed ID: 18283556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the intrinsic bioremediation potential of 1,4-dioxane and trichloroethene using innovative environmental diagnostic tools.
    Chiang SY; Mora R; Diguiseppi WH; Davis G; Sublette K; Gedalanga P; Mahendra S
    J Environ Monit; 2012 Sep; 14(9):2317-26. PubMed ID: 22825917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of 1,4-dioxane by a Flavobacterium.
    Sun B; Ko K; Ramsay JA
    Biodegradation; 2011 Jun; 22(3):651-9. PubMed ID: 21110067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of an Inducible Toluene Monooxygenase That Cooxidizes 1,4-Dioxane and 1,1-Dichloroethylene in Propanotrophic
    Deng D; Pham DN; Li F; Li M
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria.
    Mahendra S; Alvarez-Cohen L
    Environ Sci Technol; 2006 Sep; 40(17):5435-42. PubMed ID: 16999122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.