BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23909473)

  • 1. Extending the isotopically resolved mass range of Orbitrap mass spectrometers.
    Shaw JB; Brodbelt JS
    Anal Chem; 2013 Sep; 85(17):8313-8. PubMed ID: 23909473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all.
    Köcher T; Pichler P; Schutzbier M; Stingl C; Kaul A; Teucher N; Hasenfuss G; Penninger JM; Mechtler K
    J Proteome Res; 2009 Oct; 8(10):4743-52. PubMed ID: 19663507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing protein glycosylation sites through higher-energy C-trap dissociation.
    Segu ZM; Mechref Y
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1217-25. PubMed ID: 20391591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins.
    Singh C; Zampronio CG; Creese AJ; Cooper HJ
    J Proteome Res; 2012 Sep; 11(9):4517-25. PubMed ID: 22800195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Collision Cross-Sections of Protein Ions in an Orbitrap Mass Analyzer.
    Sanders JD; Grinfeld D; Aizikov K; Makarov A; Holden DD; Brodbelt JS
    Anal Chem; 2018 May; 90(9):5896-5902. PubMed ID: 29608288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Measurements of Mass and Collisional Cross-Section of Single Ions with Charge Detection Mass Spectrometry.
    Elliott AG; Harper CC; Lin HW; Susa AC; Xia Z; Williams ER
    Anal Chem; 2017 Jul; 89(14):7701-7708. PubMed ID: 28621517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct approach for qualitative and quantitative characterization of glycoproteins using tandem mass tags and an LTQ Orbitrap XL electron transfer dissociation hybrid mass spectrometer.
    Ye H; Boyne MT; Buhse LF; Hill J
    Anal Chem; 2013 Feb; 85(3):1531-9. PubMed ID: 23249142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Orbitrap: a new mass spectrometer.
    Hu Q; Noll RJ; Li H; Makarov A; Hardman M; Graham Cooks R
    J Mass Spectrom; 2005 Apr; 40(4):430-43. PubMed ID: 15838939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of antimicrobial agents in pig feed by liquid chromatography coupled to orbitrap mass spectrometry.
    George K; Vincent U; von Holst C
    J Chromatogr A; 2013 Jun; 1293():60-74. PubMed ID: 23623364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field Orbitrap mass spectrometer.
    Fornelli L; Ayoub D; Aizikov K; Liu X; Damoc E; Pevzner PA; Makarov A; Beck A; Tsybin YO
    J Proteomics; 2017 Apr; 159():67-76. PubMed ID: 28242452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of Individual Ions Sharply Increases the Resolution of Orbitrap Mass Spectra of Proteins.
    Kafader JO; Melani RD; Senko MW; Makarov AA; Kelleher NL; Compton PD
    Anal Chem; 2019 Feb; 91(4):2776-2783. PubMed ID: 30609364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collisional activation of peptide ions in FT-ICR mass spectrometry.
    Laskin J; Futrell JH
    Mass Spectrom Rev; 2003; 22(3):158-81. PubMed ID: 12838543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental approach to enhance precursor ion fragmentation for metabolite identification studies: application of dual collision cells in an orbital trap.
    Bushee JL; Argikar UA
    Rapid Commun Mass Spectrom; 2011 May; 25(10):1356-62. PubMed ID: 21504000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of non-covalent protein complexes up to 290 kDa using electrospray ionization and ion trap mass spectrometry.
    Wang Y; Schubert M; Ingendoh A; Franzen J
    Rapid Commun Mass Spectrom; 2000; 14(1):12-7. PubMed ID: 10623922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of arsenobetaine in fish tissue by species specific isotope dilution LC-LTQ-Orbitrap-MS and standard addition LC-ICPMS.
    Yang L; Ding J; Maxwell P; McCooeye M; Windust A; Ouerdane L; Bakirdere S; Willie S; Mester Z
    Anal Chem; 2011 May; 83(9):3371-8. PubMed ID: 21452903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher-energy C-trap dissociation for peptide modification analysis.
    Olsen JV; Macek B; Lange O; Makarov A; Horning S; Mann M
    Nat Methods; 2007 Sep; 4(9):709-12. PubMed ID: 17721543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the mass accuracy of high-resolution LC-MS data using background ions: a case study on the LTQ-Orbitrap.
    Scheltema RA; Kamleh A; Wildridge D; Ebikeme C; Watson DG; Barrett MP; Jansen RC; Breitling R
    Proteomics; 2008 Nov; 8(22):4647-56. PubMed ID: 18937253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix-assisted laser desorption/ionization of high-mass molecules by Fourier-transform mass spectrometry.
    Castro JA; Köster C; Wilkins C
    Rapid Commun Mass Spectrom; 1992 Apr; 6(4):239-41. PubMed ID: 1315178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping of intact, singly-charged, bovine serum albumin ions injected from the atmosphere with a 10-cm diameter, frequency-adjusted linear quadrupole ion trap.
    Koizumi H; Whitten WB; Reilly PT
    J Am Soc Mass Spectrom; 2008 Dec; 19(12):1942-7. PubMed ID: 18783963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Procedures for tandem mass spectrometry on an ion trap storage/reflectron time-of-flight mass spectrometer.
    Qian MG; Lubman DM
    Rapid Commun Mass Spectrom; 1996; 10(15):1911-20. PubMed ID: 9004527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.