These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 23909476)
1. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling. Rademaker JH; Kleijn R; Yang Y Environ Sci Technol; 2013 Sep; 47(18):10129-36. PubMed ID: 23909476 [TBL] [Abstract][Full Text] [Related]
2. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach. Habib K; Schibye PK; Vestbø AP; Dall O; Wenzel H Environ Sci Technol; 2014 Oct; 48(20):12229-37. PubMed ID: 25238428 [TBL] [Abstract][Full Text] [Related]
3. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment. Lixandru A; Venkatesan P; Jönsson C; Poenaru I; Hall B; Yang Y; Walton A; Güth K; Gauß R; Gutfleisch O Waste Manag; 2017 Oct; 68():482-489. PubMed ID: 28751173 [TBL] [Abstract][Full Text] [Related]
4. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Alonso E; Sherman AM; Wallington TJ; Everson MP; Field FR; Roth R; Kirchain RE Environ Sci Technol; 2012 Mar; 46(6):3406-14. PubMed ID: 22304002 [TBL] [Abstract][Full Text] [Related]
5. Neodymium as the main feature of permanent magnets from hard disk drives (HDDs). München DD; Veit HM Waste Manag; 2017 Mar; 61():372-376. PubMed ID: 28161335 [TBL] [Abstract][Full Text] [Related]
6. Recycling potential of neodymium: the case of computer hard disk drives. Sprecher B; Kleijn R; Kramer GJ Environ Sci Technol; 2014 Aug; 48(16):9506-13. PubMed ID: 25029356 [TBL] [Abstract][Full Text] [Related]
7. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives. Habib K; Parajuly K; Wenzel H Environ Sci Technol; 2015 Oct; 49(20):12441-9. PubMed ID: 26351732 [TBL] [Abstract][Full Text] [Related]
8. Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors. Jin H; Afiuny P; Dove S; Furlan G; Zakotnik M; Yih Y; Sutherland JW Environ Sci Technol; 2018 Mar; 52(6):3796-3802. PubMed ID: 29486124 [TBL] [Abstract][Full Text] [Related]
9. Unlocking Dysprosium Constraints for China's 1.5 °C Climate Target. Dai T; Liu YF; Wang P; Qiu Y; Mancheri N; Chen W; Liu JX; Chen WQ; Wang H; Wang AJ Environ Sci Technol; 2023 Sep; 57(38):14113-14126. PubMed ID: 37709662 [TBL] [Abstract][Full Text] [Related]
10. NdFeB content in ancillary motors of U.S. conventional passenger cars and light trucks: Results from the field. Nguyen RT; Imholte DD; Matthews AC; Swank WD Waste Manag; 2019 Jan; 83():209-217. PubMed ID: 30459019 [TBL] [Abstract][Full Text] [Related]
11. Scarcity of rare earth elements. de Boer MA; Lammertsma K ChemSusChem; 2013 Nov; 6(11):2045-55. PubMed ID: 24009098 [TBL] [Abstract][Full Text] [Related]
12. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Sprecher B; Xiao Y; Walton A; Speight J; Harris R; Kleijn R; Visser G; Kramer GJ Environ Sci Technol; 2014 Apr; 48(7):3951-8. PubMed ID: 24576005 [TBL] [Abstract][Full Text] [Related]
13. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction. Kim D; Powell LE; Delmau LH; Peterson ES; Herchenroeder J; Bhave RR Environ Sci Technol; 2015 Aug; 49(16):9452-9. PubMed ID: 26107531 [TBL] [Abstract][Full Text] [Related]
14. ZnCl Ding A; Liu C; Zhang X; Lei L; Xiao C Environ Sci Technol; 2022 Apr; 56(7):4404-4412. PubMed ID: 35286072 [TBL] [Abstract][Full Text] [Related]
15. Tracking Three Decades of Global Neodymium Stocks and Flows with a Trade-Linked Multiregional Material Flow Analysis. Liu Q; Sun K; Ouyang X; Sen B; Liu L; Dai T; Liu G Environ Sci Technol; 2022 Aug; 56(16):11807-11817. PubMed ID: 35920659 [TBL] [Abstract][Full Text] [Related]
16. Neodymium recovery from NdFeB magnet wastes using Primene 81R·Cyanex 572 IL by solvent extraction. Pavón S; Fortuny A; Coll MT; Sastre AM J Environ Manage; 2018 Sep; 222():359-367. PubMed ID: 29870964 [TBL] [Abstract][Full Text] [Related]
17. Development of a Near-Zero-Waste Valorization Concept for Waste NdFeB Magnets: Production of Antimicrobial Fe Alginate Beads via Adsorption and Recovery of High-Purity Rare-Earth Elements. Emil-Kaya E; Uysal E; Dikmetas DN; Karbancioğlu-Güler F; Gürmen S; Friedrich B ACS Omega; 2024 Feb; 9(6):6442-6454. PubMed ID: 38371772 [TBL] [Abstract][Full Text] [Related]
18. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets. Imashuku S; Wagatsuma K; Kawai J Microsc Microanal; 2016 Feb; 22(1):82-6. PubMed ID: 26739864 [TBL] [Abstract][Full Text] [Related]
19. Recovery and separation of rare Earth elements using salmon milt. Takahashi Y; Kondo K; Miyaji A; Watanabe Y; Fan Q; Honma T; Tanaka K PLoS One; 2014; 9(12):e114858. PubMed ID: 25490035 [TBL] [Abstract][Full Text] [Related]
20. Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with 'designer properties' that exceed those of starting materials. Zakotnik M; Tudor CO Waste Manag; 2015 Oct; 44():48-54. PubMed ID: 26239935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]