These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23909476)

  • 21. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon.
    Rollat A; Guyonnet D; Planchon M; Tuduri J
    Waste Manag; 2016 Mar; 49():427-436. PubMed ID: 26818182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Materials flow analysis of neodymium, status of rare earth metal in the Republic of Korea.
    Swain B; Kang L; Mishra C; Ahn J; Hong HS
    Waste Manag; 2015 Nov; 45():351-60. PubMed ID: 26210233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.
    Bandara HM; Darcy JW; Apelian D; Emmert MH
    Environ Sci Technol; 2014 Jun; 48(12):6553-60. PubMed ID: 24934194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical activation induced treatment for the synergistic recovery of valuable elements from spent NdFeB magnets.
    Wu J; Wang D; Zhang Z; Ye C; Wang Z; Hu X
    Waste Manag; 2024 Apr; 178():76-84. PubMed ID: 38382349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis.
    Freitas R; Costa S; D Cardoso CE; Morais T; Moleiro P; Matias AC; Pereira AF; Machado J; Correia B; Pinheiro D; Rodrigues A; Colónia J; Soares AMVM; Pereira E
    Chemosphere; 2020 Apr; 244():125457. PubMed ID: 32050323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uncovering the Key Features of Dysprosium Flows and Stocks in China.
    Xiao S; Geng Y; Pan H; Gao Z; Yao T
    Environ Sci Technol; 2022 Jun; 56(12):8682-8690. PubMed ID: 35544346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental and health-related research on application and production of rare earth elements under scrutiny.
    Klingelhöfer D; Braun M; Dröge J; Fischer A; Brüggmann D; Groneberg DA
    Global Health; 2022 Oct; 18(1):86. PubMed ID: 36253760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating Metal-Tributyl Phosphate Complexes during Supercritical Fluid Extraction of the NdFeB Magnet Using Density Functional Theory and X-ray Absorption Spectroscopy.
    Zhang J; Chen N; Morozova V; Voznyy O; Azimi G
    Inorg Chem; 2023 May; 62(20):7689-7702. PubMed ID: 37154778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.
    Bogart JA; Lippincott CA; Carroll PJ; Schelter EJ
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8222-5. PubMed ID: 26014901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review on the Parameters of Recycling NdFeB Magnets via a Hydrogenation Process.
    Habibzadeh A; Kucuker MA; Gökelma M
    ACS Omega; 2023 May; 8(20):17431-17445. PubMed ID: 37251130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective Recovery of Rare Earth Elements from a Wide Range of E-Waste and Process Scalability of Membrane Solvent Extraction.
    Deshmane VG; Islam SZ; Bhave RR
    Environ Sci Technol; 2020 Jan; 54(1):550-558. PubMed ID: 31794204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An evaluation of the potential yield of indium recycled from end-of-life LCDs: A case study in China.
    Wang H; Gu Y; Wu Y; Zhang YN; Wang W
    Waste Manag; 2015 Dec; 46():480-7. PubMed ID: 26277718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dysprosium-free melt-spun permanent magnets.
    Brown DN; Wu Z; He F; Miller DJ; Herchenroeder JW
    J Phys Condens Matter; 2014 Feb; 26(6):064202. PubMed ID: 24468854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery and Separation of Dysprosium from Waste Neodymium Magnets through Cyphos IL 104 Extraction.
    Chen WS; Jian GC; Lee CH
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of High-Performance Hot-Deformed Neodymium-Iron-Boron Magnets without Heavy Rare-Earth Elements.
    Hioki K
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery and separation of rare earth elements using columns loaded with DNA-filter hybrid.
    Takahashi Y; Kondo K; Miyaji A; Umeo M; Honma T; Asaoka S
    Anal Sci; 2012; 28(10):985-92. PubMed ID: 23059995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tailoring the Use of 8-Hydroxyquinolines for the Facile Separation of Iron, Dysprosium and Neodymium.
    Melegari M; Neri M; Falco A; Tegoni M; Maffini M; Fornari F; Mucchino C; Artizzu F; Serpe A; Marchiò L
    ChemSusChem; 2024 May; ():e202400286. PubMed ID: 38786929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Commercial-Scale Modification of NdFeB Magnets under Laser-Assisted Conditions.
    Radwan-Pragłowska N; Radwan-Pragłowska J; Łysiak K; Galek T; Janus Ł; Bogdał D
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment.
    Chancerel P; Rotter VS; Ueberschaar M; Marwede M; Nissen NF; Lang KD
    Waste Manag Res; 2013 Oct; 31(10 Suppl):3-16. PubMed ID: 24068305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.