These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 23909663)
1. Enhanced oral delivery of paclitaxel using acetylcysteine functionalized chitosan-vitamin E succinate nanomicelles based on a mucus bioadhesion and penetration mechanism. Lian H; Zhang T; Sun J; Liu X; Ren G; Kou L; Zhang Y; Han X; Ding W; Ai X; Wu C; Li L; Wang Y; Sun Y; Wang S; He Z Mol Pharm; 2013 Sep; 10(9):3447-58. PubMed ID: 23909663 [TBL] [Abstract][Full Text] [Related]
2. Supramolecular micellar nanoaggregates based on a novel chitosan/vitamin E succinate copolymer for paclitaxel selective delivery. Lian H; Sun J; Yu YP; Liu YH; Cao W; Wang YJ; Sun YH; Wang SL; He ZG Int J Nanomedicine; 2011; 6():3323-34. PubMed ID: 22228999 [TBL] [Abstract][Full Text] [Related]
3. Rational design of hybrid nanomicelles integrating mucosal penetration and P-glycoprotein inhibition for efficient oral delivery of paclitaxel. Lian H; He Z; Meng Z Colloids Surf B Biointerfaces; 2017 Jul; 155():429-439. PubMed ID: 28463810 [TBL] [Abstract][Full Text] [Related]
4. Comparative study of Pluronic(®) F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats. Chen D; Xia D; Li X; Zhu Q; Yu H; Zhu C; Gan Y Int J Pharm; 2013 Jun; 449(1-2):1-9. PubMed ID: 23583840 [TBL] [Abstract][Full Text] [Related]
5. The enhancing effect of N-acetylcysteine modified hyaluronic acid-octadecylamine micelles on the oral absorption of paclitaxel. Zhang M; Asghar S; Jin X; Hu Z; Ping Q; Chen Z; Shao F; Xiao Y Int J Biol Macromol; 2019 Oct; 138():636-647. PubMed ID: 31330211 [TBL] [Abstract][Full Text] [Related]
6. Mucus adhesion- and penetration-enhanced liposomes for paclitaxel oral delivery. Liu Y; Yang T; Wei S; Zhou C; Lan Y; Cao A; Yang J; Wang W Int J Pharm; 2018 Feb; 537(1-2):245-256. PubMed ID: 29288808 [TBL] [Abstract][Full Text] [Related]
7. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Chen T; Tu L; Wang G; Qi N; Wu W; Zhang W; Feng J Int J Pharm; 2020 Mar; 578():119105. PubMed ID: 32018019 [TBL] [Abstract][Full Text] [Related]
8. Stable phosphatidylcholine-bile salt mixed micelles enhance oral absorption of paclitaxel: preparation and mechanism in rats. Zhao Y; Cui Y; Li Y; Li L J Drug Target; 2014 Dec; 22(10):901-12. PubMed ID: 25077358 [TBL] [Abstract][Full Text] [Related]
9. N-acetylcysteine modified hyaluronic acid-paclitaxel conjugate for efficient oral chemotherapy through mucosal bioadhesion ability. Jin X; Asghar S; Zhang M; Chen Z; Huang L; Ping Q; Xiao Y Colloids Surf B Biointerfaces; 2018 Dec; 172():655-664. PubMed ID: 30243219 [TBL] [Abstract][Full Text] [Related]
10. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Mo R; Jin X; Li N; Ju C; Sun M; Zhang C; Ping Q Biomaterials; 2011 Jul; 32(20):4609-20. PubMed ID: 21440934 [TBL] [Abstract][Full Text] [Related]
11. Enhanced oral absorption of paclitaxel in N-deoxycholic acid-N, O-hydroxyethyl chitosan micellar system. Li H; Huo M; Zhou J; Dai Y; Deng Y; Shi X; Masoud J J Pharm Sci; 2010 Nov; 99(11):4543-53. PubMed ID: 20845453 [TBL] [Abstract][Full Text] [Related]
12. Potential advantages of a novel chitosan-N-acetylcysteine surface modified nanostructured lipid carrier on the performance of ophthalmic delivery of curcumin. Liu D; Li J; Pan H; He F; Liu Z; Wu Q; Bai C; Yu S; Yang X Sci Rep; 2016 Jun; 6():28796. PubMed ID: 27350323 [TBL] [Abstract][Full Text] [Related]
13. Encapsulation of paclitaxel into lauric acid-O-carboxymethyl chitosan-transferrin micelles for hydrophobic drug delivery and site-specific targeted delivery. Nam JP; Park SC; Kim TH; Jang JY; Choi C; Jang MK; Nah JW Int J Pharm; 2013 Nov; 457(1):124-35. PubMed ID: 24076228 [TBL] [Abstract][Full Text] [Related]
14. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Du X; Yin S; Xu L; Ma J; Yu H; Wang G; Li J Carbohydr Polym; 2020 Feb; 229():115484. PubMed ID: 31826482 [TBL] [Abstract][Full Text] [Related]
15. Nano-formulation of paclitaxel by vitamin E succinate functionalized pluronic micelles for enhanced encapsulation, stability and cytotoxicity. Tao Y; Han J; Wang X; Dou H Colloids Surf B Biointerfaces; 2013 Feb; 102():604-10. PubMed ID: 23104031 [TBL] [Abstract][Full Text] [Related]
16. Enhancement on oral absorption of paclitaxel by multifunctional pluronic micelles. Li Y; Bi Y; Xi Y; Li L J Drug Target; 2013 Feb; 21(2):188-99. PubMed ID: 23126604 [TBL] [Abstract][Full Text] [Related]
17. Erythrocyte membrane nanoparticles improve the intestinal absorption of paclitaxel. Jiang X; Wang K; Zhou Z; Zhang Y; Sha H; Xu Q; Wu J; Wang J; Wu J; Hu Y; Liu B Biochem Biophys Res Commun; 2017 Jun; 488(2):322-328. PubMed ID: 28495530 [TBL] [Abstract][Full Text] [Related]
18. PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel: in vitro characterization and in vivo evaluation. Qu G; Yao Z; Zhang C; Wu X; Ping Q Eur J Pharm Sci; 2009 May; 37(2):98-105. PubMed ID: 19429416 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. Huo M; Zhang Y; Zhou J; Zou A; Yu D; Wu Y; Li J; Li H Int J Pharm; 2010 Jul; 394(1-2):162-73. PubMed ID: 20457237 [TBL] [Abstract][Full Text] [Related]
20. α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: preparation, characterization and in vitro/in vivo evaluations. Liang N; Sun S; Li X; Piao H; Piao H; Cui F; Fang L Int J Pharm; 2012 Feb; 423(2):480-8. PubMed ID: 22183133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]