These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 2390980)

  • 61. Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise.
    Dupont-Versteegden EE; Houlé JD; Gurley CM; Peterson CA
    Am J Physiol; 1998 Oct; 275(4):C1124-33. PubMed ID: 9755066
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of eccentric and concentric training on capillarization and myosin heavy chain contents in rat skeletal muscles after hindlimb suspension.
    Cornachione A; Cação-Benedini LO; Martinez EZ; Neder L; Cláudia Mattiello-Sverzut A
    Acta Histochem; 2011 May; 113(3):277-82. PubMed ID: 20153026
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Skeletal muscle cytochrome c and myoglobin, endurance, and frequency of training.
    Hickson RC
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Sep; 51(3):746-9. PubMed ID: 6276338
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of anabolic/androgenic steroids on myosin heavy chain expression in hindlimb muscles of male rats.
    Noirez P; Ferry A
    Eur J Appl Physiol; 2000 Jan; 81(1-2):155-8. PubMed ID: 10552281
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Activity-induced fiber regeneration in rat soleus muscle.
    Wanek LJ; Snow MH
    Anat Rec; 2000 Feb; 258(2):176-85. PubMed ID: 10645965
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Changes in fiber composition of soleus muscle during rat hindlimb suspension.
    Templeton GH; Sweeney HL; Timson BF; Padalino M; Dudenhoeffer GA
    J Appl Physiol (1985); 1988 Sep; 65(3):1191-5. PubMed ID: 2972672
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modulation of transglutaminase expression in rat skeletal muscle by induction of atrophy and endurance training.
    Park SC; Kim WH; Lee MC; Seong SC; Song KY; Choe MA
    J Korean Med Sci; 1994 Dec; 9(6):490-6. PubMed ID: 7786446
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Seven skeletal muscles rich in slow muscle fibers may function to sustain neutral position in the rodent hindlimb.
    Hitomi Y; Kizaki T; Watanabe S; Matsumura G; Fujioka Y; Haga S; Izawa T; Taniguchi N; Ohno H
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jan; 140(1):45-50. PubMed ID: 15621508
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Free mobilization and low- to high-intensity exercise in immobilization-induced muscle atrophy.
    Kannus P; Jozsa L; Järvinen TL; Kvist M; Vieno T; Järvinen TA; Natri A; Järvinen M
    J Appl Physiol (1985); 1998 Apr; 84(4):1418-24. PubMed ID: 9516212
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of high-intensity exercise training on functional capacity of limb skeletal muscle.
    Troup JP; Metzger JM; Fitts RH
    J Appl Physiol (1985); 1986 May; 60(5):1743-51. PubMed ID: 2940217
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Regulation by exercise of the pool of G4 acetylcholinesterase characterizing fast muscles: opposite effect of running training in antagonist muscles.
    Jasmin BJ; Gisiger V
    J Neurosci; 1990 May; 10(5):1444-54. PubMed ID: 2332790
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recovery time course in contractile function of fast and slow skeletal muscle after hindlimb immobilization.
    Witzmann FA; Kim DH; Fitts RH
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Mar; 52(3):677-82. PubMed ID: 7068483
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Endurance training: volume-dependent adaptational changes in myosin.
    Seene T; Alev K; Kaasik P; Pehme A; Parring AM
    Int J Sports Med; 2005 Dec; 26(10):815-21. PubMed ID: 16320163
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Specific impulse patterns regulate acetylcholinesterase activity in skeletal muscles of rats and rabbits.
    Sketelj J; Leisner E; Gohlsch B; Skorjanc D; Pette D
    J Neurosci Res; 1997 Jan; 47(1):49-57. PubMed ID: 8981237
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quantitative assessment of degenerative changes in soleus muscle after hindlimb suspension and recovery.
    Bigard AX; Merino D; Lienhard F; Serrurier B; Guezennec CY
    Eur J Appl Physiol Occup Physiol; 1997; 75(5):380-7. PubMed ID: 9189723
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of voluntary wheel running and amino acid supplementation on skeletal muscle of mice.
    Pellegrino MA; Brocca L; Dioguardi FS; Bottinelli R; D'Antona G
    Eur J Appl Physiol; 2005 Mar; 93(5-6):655-64. PubMed ID: 15778894
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Skeletal muscle damage in the rat hindlimb following single or repeated daily bouts of downhill exercise.
    Smith HK; Plyley MJ; Rodgers CD; McKee NH
    Int J Sports Med; 1997 Feb; 18(2):94-100. PubMed ID: 9081264
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nonuniform effects of endurance exercise training on vasodilation in rat skeletal muscle.
    McAllister RM; Jasperse JL; Laughlin MH
    J Appl Physiol (1985); 2005 Feb; 98(2):753-61. PubMed ID: 15448126
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Control of myosin heavy chain expression: interaction of hypothyroidism and hindlimb suspension.
    Diffee GM; Haddad F; Herrick RE; Baldwin KM
    Am J Physiol; 1991 Dec; 261(6 Pt 1):C1099-106. PubMed ID: 1767813
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hindlimb immobilization: length-tension and contractile properties of skeletal muscle.
    Witzmann FA; Kim DH; Fitts RH
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Aug; 53(2):335-45. PubMed ID: 7118655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.