These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23909910)

  • 21. Postsynaptic GluN2B-containing NMDA receptors contribute to long-term depression induction in medial vestibular nucleus neurons of juvenile rats.
    Li YH; Li Y; Zheng L; Wang J
    Neurosci Lett; 2020 Jan; 715():134674. PubMed ID: 31809803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Piperazine-2,3-dicarboxylic acid derivatives as dual antagonists of NMDA and GluK1-containing kainate receptors.
    Irvine MW; Costa BM; Dlaboga D; Culley GR; Hulse R; Scholefield CL; Atlason P; Fang G; Eaves R; Morley R; Mayo-Martin MB; Amici M; Bortolotto ZA; Donaldson L; Collingridge GL; Molnár E; Monaghan DT; Jane DE
    J Med Chem; 2012 Jan; 55(1):327-41. PubMed ID: 22111545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women.
    Bhandage AK; Jin Z; Hellgren C; Korol SV; Nowak K; Williamsson L; Sundström-Poromaa I; Birnir B
    J Neuroimmunol; 2017 Apr; 305():51-58. PubMed ID: 28284346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors.
    Wang JX; Irvine MW; Burnell ES; Sapkota K; Thatcher RJ; Li M; Simorowski N; Volianskis A; Collingridge GL; Monaghan DT; Jane DE; Furukawa H
    Nat Commun; 2020 Jan; 11(1):423. PubMed ID: 31969570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deconstruction - Reconstruction: Analysis of the Crucial Structural Elements of GluN2B-Selective, Negative Allosteric NMDA Receptor Modulators with 3-Benzazepine Scaffold.
    Ritter N; Korff M; Markus A; Schepmann D; Seebohm G; Schreiber JA; Wünsch B
    Cell Physiol Biochem; 2021 Mar; 55(S3):1-13. PubMed ID: 33656308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and mechanistic determinants of a novel site for noncompetitive inhibition of GluN2D-containing NMDA receptors.
    Hansen KB; Traynelis SF
    J Neurosci; 2011 Mar; 31(10):3650-61. PubMed ID: 21389220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pharmacological characterization of a novel negative allosteric modulator of NMDA receptors, UBP792.
    Sapkota K; Burnell ES; Irvine MW; Fang G; Gawande DY; Dravid SM; Jane DE; Monaghan DT
    Neuropharmacology; 2021 Dec; 201():108818. PubMed ID: 34610288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit.
    Volkmann RA; Fanger CM; Anderson DR; Sirivolu VR; Paschetto K; Gordon E; Virginio C; Gleyzes M; Buisson B; Steidl E; Mierau SB; Fagiolini M; Menniti FS
    PLoS One; 2016; 11(2):e0148129. PubMed ID: 26829109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In the Telencephalon, GluN2C NMDA Receptor Subunit mRNA is Predominately Expressed in Glial Cells and GluN2D mRNA in Interneurons.
    Alsaad HA; DeKorver NW; Mao Z; Dravid SM; Arikkath J; Monaghan DT
    Neurochem Res; 2019 Jan; 44(1):61-77. PubMed ID: 29651654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMDA receptors control vagal afferent excitability in the nucleus of the solitary tract.
    Vance KM; Rogers RC; Hermann GE
    Brain Res; 2015 Jan; 1595():84-91. PubMed ID: 25446446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of GluN2B-containing NMDA receptors in short- and long-term fear recall.
    Mikics E; Toth M; Biro L; Bruzsik B; Nagy B; Haller J
    Physiol Behav; 2017 Aug; 177():44-48. PubMed ID: 28400283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel class of negative allosteric modulators of NMDA receptor function.
    Katzman BM; Perszyk RE; Yuan H; Tahirovic YA; Sotimehin AE; Traynelis SF; Liotta DC
    Bioorg Med Chem Lett; 2015 Dec; 25(23):5583-8. PubMed ID: 26525866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of 1,4,7,8,9,10-hexahydro-9-methyl-6-nitropyrido[3,4-f]- quinoxaline-2,3-dione and related quinoxalinediones: characterization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (and N-methyl-D-aspartate) receptor and anticonvulsant activity.
    Bigge CF; Malone TC; Boxer PA; Nelson CB; Ortwine DF; Schelkun RM; Retz DM; Lescosky LJ; Borosky SA; Vartanian MG
    J Med Chem; 1995 Sep; 38(19):3720-40. PubMed ID: 7562904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators.
    Monaghan DT; Irvine MW; Costa BM; Fang G; Jane DE
    Neurochem Int; 2012 Sep; 61(4):581-92. PubMed ID: 22269804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Bioactive Protein-Ligand Conformation of GluN2C-Selective Positive Allosteric Modulators Bound to the NMDA Receptor.
    Kaiser TM; Kell SA; Kusumoto H; Shaulsky G; Bhattacharya S; Epplin MP; Strong KL; Miller EJ; Cox BD; Menaldino DS; Liotta DC; Traynelis SF; Burger PB
    Mol Pharmacol; 2018 Feb; 93(2):141-156. PubMed ID: 29242355
    [No Abstract]   [Full Text] [Related]  

  • 36. Memantine selectively blocks extrasynaptic NMDA receptors in rat substantia nigra dopamine neurons.
    Wu YN; Johnson SW
    Brain Res; 2015 Apr; 1603():1-7. PubMed ID: 25656790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of the N-methyl-D-aspartate receptor GluN2D subunit in phencyclidine-induced motor impairment, gene expression, and increased Fos immunoreactivity.
    Yamamoto H; Kamegaya E; Sawada W; Hasegawa R; Yamamoto T; Hagino Y; Takamatsu Y; Imai K; Koga H; Mishina M; Ikeda K
    Mol Brain; 2013 Dec; 6():56. PubMed ID: 24330819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facilitation of GluN2C-containing NMDA receptors in the external globus pallidus increases firing of fast spiking neurons and improves motor function in a hemiparkinsonian mouse model.
    Liu J; Shelkar GP; Sarode LP; Gawande DY; Zhao F; Clausen RP; Ugale RR; Dravid SM
    Neurobiol Dis; 2021 Mar; 150():105254. PubMed ID: 33421565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials.
    Randle JC; Guet T; Bobichon C; Moreau C; Curutchet P; Lambolez B; de Carvalho LP; Cordi A; Lepagnol JM
    Mol Pharmacol; 1992 Feb; 41(2):337-45. PubMed ID: 1371583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists derived from 3-benzazepines: synthesis and pharmacological evaluation of benzo[7]annulen-7-amines.
    Benner A; Bonifazi A; Shirataki C; Temme L; Schepmann D; Quaglia W; Shoji O; Watanabe Y; Daniliuc C; Wünsch B
    ChemMedChem; 2014 Apr; 9(4):741-51. PubMed ID: 24677663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.