These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 23909919)
41. An Open, Object-Based Framework for Generating Anisotropy in Sedimentary Subsurface Models. Bennett JP; Haslauer CP; Ross M; Cirpka OA Ground Water; 2019 May; 57(3):420-429. PubMed ID: 29862499 [TBL] [Abstract][Full Text] [Related]
42. Multiple-aquifer characterization from single borehole extensometer records. Pope JP; Burbey TJ Ground Water; 2004; 42(1):45-58. PubMed ID: 14763616 [TBL] [Abstract][Full Text] [Related]
43. Estimating spatially-variable first-order rate constants in groundwater reactive transport systems. Bailey RT; Baù D J Contam Hydrol; 2011 Mar; 122(1-4):104-21. PubMed ID: 21185621 [TBL] [Abstract][Full Text] [Related]
44. Transboundary flow modeling: the Zohor depression of Austria and the Slovak Republic. Fendek M; Fendekova M Ground Water; 2005; 43(5):717-21. PubMed ID: 16149967 [TBL] [Abstract][Full Text] [Related]
45. Land Subsidence and Its Relations with Sinkhole Activity in Karapınar Region, Turkey: A Multi-Sensor InSAR Time Series Study. Orhan O; Oliver-Cabrera T; Wdowinski S; Yalvac S; Yakar M Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498896 [TBL] [Abstract][Full Text] [Related]
46. An analytical method to determine ground water supply well network designs. MacMillan GJ Ground Water; 2009; 47(6):822-7. PubMed ID: 19682093 [TBL] [Abstract][Full Text] [Related]
47. Statistical approach for evaluating the significance of generating new data to the management of the brackish groundwater fields in Kuwait. Fadlelmawla AA J Environ Manage; 2006 Nov; 81(3):223-32. PubMed ID: 16584833 [TBL] [Abstract][Full Text] [Related]
48. Cokriging Transmissivity, Head and Trajectory Data for Transmissivity and Solute Path Estimation. Butera I; Soffia C Ground Water; 2017 May; 55(3):362-374. PubMed ID: 27861818 [TBL] [Abstract][Full Text] [Related]
49. Surface Subsidence Analysis by Multi-Temporal InSAR and GRACE: A Case Study in Beijing. Guo J; Zhou L; Yao C; Hu J Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649183 [TBL] [Abstract][Full Text] [Related]
50. Estimating hydraulic properties using a moving-model approach and multiple aquifer tests. Halford KJ; Yobbi D Ground Water; 2006; 44(2):284-91. PubMed ID: 16556210 [TBL] [Abstract][Full Text] [Related]
51. Reducing uncertainty in calibrating aquifer flow model with multiple scales of heterogeneity. Zhang Y Ground Water; 2014; 52(3):343-51. PubMed ID: 24749908 [TBL] [Abstract][Full Text] [Related]
52. [Research on monitoring land subsidence in Beijing plain area using PS-InSAR technology]. Gu ZQ; Gong HL; Zhang YQ; Lu XH; Wang S; Wang R; Liu HH Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1898-902. PubMed ID: 25269304 [TBL] [Abstract][Full Text] [Related]
53. Aquifer Storage and Recovery Using Saline Aquifers: Hydrogeological Controls and Opportunities. Maliva RG; Manahan WS; Missimer TM Ground Water; 2020 Jan; 58(1):9-18. PubMed ID: 31705655 [TBL] [Abstract][Full Text] [Related]
54. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer. Orban P; Brouyère S; Batlle-Aguilar J; Couturier J; Goderniaux P; Leroy M; Maloszewski P; Dassargues A J Contam Hydrol; 2010 Oct; 118(1-2):79-93. PubMed ID: 20864207 [TBL] [Abstract][Full Text] [Related]
55. Urban growth and land subsidence: Multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Cigna F; Tapete D Sci Total Environ; 2022 Mar; 811():152211. PubMed ID: 34890679 [TBL] [Abstract][Full Text] [Related]
56. Land subsidence susceptibility mapping using PWRSTFAL framework and analytic hierarchy process: fuzzy method (case study: Damaneh-Daran Plain in the west of Isfahan Province, Iran). Chitsazan M; Rahmani G; Ghafoury H Environ Monit Assess; 2022 Feb; 194(3):192. PubMed ID: 35169888 [TBL] [Abstract][Full Text] [Related]
57. Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model. Abusaada M; Sauter M Ground Water; 2013; 51(4):641-50. PubMed ID: 23039080 [TBL] [Abstract][Full Text] [Related]
58. Coupled processes of groundwater dynamics and land subsidence in the context of active human intervention, a case in Tianjin, China. Su G; Xiong C; Zhang G; Wang Y; Shen Q; Chen X; An H; Qin L Sci Total Environ; 2023 Dec; 903():166803. PubMed ID: 37689190 [TBL] [Abstract][Full Text] [Related]
59. Computation of groundwater resources and recharge in Chithar River Basin, South India. Subramani T; Babu S; Elango L Environ Monit Assess; 2013 Jan; 185(1):983-94. PubMed ID: 22961326 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of Hydraulic Conductivity Estimates from Various Approaches with Groundwater Flow Models. Sun D; Luo N; Vandenhoff A; McCall W; Zhao Z; Wang C; Rudolph DL; Illman WA Ground Water; 2024; 62(3):384-404. PubMed ID: 37605321 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]