These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A moment-based method for estimating the proportion of true null hypotheses and its application to microarray gene expression data. Lai Y Biostatistics; 2007 Oct; 8(4):744-55. PubMed ID: 17244594 [TBL] [Abstract][Full Text] [Related]
6. A unified approach for simultaneous gene clustering and differential expression identification. Yuan M; Kendziorski C Biometrics; 2006 Dec; 62(4):1089-98. PubMed ID: 17156283 [TBL] [Abstract][Full Text] [Related]
7. An empirical Bayesian approach for identifying differential coexpression in high-throughput experiments. Dawson JA; Kendziorski C Biometrics; 2012 Jun; 68(2):455-65. PubMed ID: 22004327 [TBL] [Abstract][Full Text] [Related]
8. Testing the prediction error difference between 2 predictors. van de Wiel MA; Berkhof J; van Wieringen WN Biostatistics; 2009 Jul; 10(3):550-60. PubMed ID: 19380517 [TBL] [Abstract][Full Text] [Related]
9. Bayesian designs and the control of frequentist characteristics: a practical solution. Ventz S; Trippa L Biometrics; 2015 Mar; 71(1):218-226. PubMed ID: 25196832 [TBL] [Abstract][Full Text] [Related]
10. Network-based empirical Bayes methods for linear models with applications to genomic data. Li C; Wei Z; Li H J Biopharm Stat; 2010 Mar; 20(2):209-22. PubMed ID: 20309755 [TBL] [Abstract][Full Text] [Related]
11. Sources of variation in false discovery rate estimation include sample size, correlation, and inherent differences between groups. Zhang J; Coombes KR BMC Bioinformatics; 2012; 13 Suppl 13(Suppl 13):S1. PubMed ID: 23320794 [TBL] [Abstract][Full Text] [Related]
12. A Bayesian determination of threshold for identifying differentially expressed genes in microarray experiments. Chen J; Sarkar SK Stat Med; 2006 Sep; 25(18):3174-89. PubMed ID: 16345048 [TBL] [Abstract][Full Text] [Related]
13. Controlling false discovery rate for mediator selection in high-dimensional data. Dai R; Li R; Lee S; Liu Y Biometrics; 2024 Jul; 80(3):. PubMed ID: 39073774 [TBL] [Abstract][Full Text] [Related]
14. Estimating the false discovery rate using nonparametric deconvolution. van de Wiel MA; Kim KI Biometrics; 2007 Sep; 63(3):806-15. PubMed ID: 17825012 [TBL] [Abstract][Full Text] [Related]
15. Empirical Bayes screening of many p-values with applications to microarray studies. Datta S; Datta S Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856 [TBL] [Abstract][Full Text] [Related]
16. An omnibus consistent adaptive percentile modified Wilcoxon rank sum test with applications in gene expression studies. Thas O; Clement L; Rayner JC; Carvalho B; Van Criekinge W Biometrics; 2012 Jun; 68(2):446-54. PubMed ID: 22506868 [TBL] [Abstract][Full Text] [Related]
17. RichMind: A Tool for Improved Inference from Large-Scale Neuroimaging Results. Maron-Katz A; Amar D; Simon EB; Hendler T; Shamir R PLoS One; 2016; 11(7):e0159643. PubMed ID: 27455041 [TBL] [Abstract][Full Text] [Related]
18. Wavelet thresholding with bayesian false discovery rate control. Tadesse MG; Ibrahim JG; Vannucci M; Gentleman R Biometrics; 2005 Mar; 61(1):25-35. PubMed ID: 15737075 [TBL] [Abstract][Full Text] [Related]
19. A Laplace mixture model for identification of differential expression in microarray experiments. Bhowmick D; Davison AC; Goldstein DR; Ruffieux Y Biostatistics; 2006 Oct; 7(4):630-41. PubMed ID: 16565148 [TBL] [Abstract][Full Text] [Related]
20. A SATS algorithm for jointly identifying multiple differentially expressed gene sets. Yang TY Stat Med; 2011 Jul; 30(16):2028-39. PubMed ID: 21472762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]