These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 23910014)
1. TNFα regulates sugar transporters in the human intestinal epithelial cell line Caco-2. Barrenetxe J; Sánchez O; Barber A; Gascón S; Rodríguez-Yoldi MJ; Lostao MP Cytokine; 2013 Oct; 64(1):181-7. PubMed ID: 23910014 [TBL] [Abstract][Full Text] [Related]
2. Basolateral presence of the proinflammatory cytokine tumor necrosis factor -α and secretions from adipocytes and macrophages reduce intestinal sugar transport. Castilla-Madrigal R; Gil-Iturbe E; Sáinz N; Moreno-Aliaga MJ; Lostao MP J Cell Physiol; 2019 Apr; 234(4):4352-4361. PubMed ID: 30246472 [TBL] [Abstract][Full Text] [Related]
3. EPA blocks TNF-α-induced inhibition of sugar uptake in Caco-2 cells via GPR120 and AMPK. Castilla-Madrigal R; Barrenetxe J; Moreno-Aliaga MJ; Lostao MP J Cell Physiol; 2018 Mar; 233(3):2426-2433. PubMed ID: 28771713 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory effect of TNF-alpha on the intestinal absorption of galactose. Amador P; García-Herrera J; Marca MC; de la Osada J; Acín S; Navarro MA; Salvador MT; Lostao MP; Rodríguez-Yoldi MJ J Cell Biochem; 2007 May; 101(1):99-111. PubMed ID: 17177295 [TBL] [Abstract][Full Text] [Related]
5. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism. Le Gall M; Tobin V; Stolarczyk E; Dalet V; Leturque A; Brot-Laroche E J Cell Physiol; 2007 Dec; 213(3):834-43. PubMed ID: 17786952 [TBL] [Abstract][Full Text] [Related]
6. DHA and its derived lipid mediators MaR1, RvD1 and RvD2 block TNF-α inhibition of intestinal sugar and glutamine uptake in Caco-2 cells. Castilla-Madrigal R; Gil-Iturbe E; López de Calle M; Moreno-Aliaga MJ; Lostao MP J Nutr Biochem; 2020 Feb; 76():108264. PubMed ID: 31760230 [TBL] [Abstract][Full Text] [Related]
7. The effect of tumor necrosis factor-alpha on D-fructose intestinal transport in rabbits. García-Herrera J; Navarro MA; Marca MC; de la Osada J; Rodríguez-Yoldi MJ Cytokine; 2004 Jan; 25(1):21-30. PubMed ID: 14687582 [TBL] [Abstract][Full Text] [Related]
8. Leptin regulates sugar and amino acids transport in the human intestinal cell line Caco-2. Fanjul C; Barrenetxe J; Iñigo C; Sakar Y; Ducroc R; Barber A; Lostao MP Acta Physiol (Oxf); 2012 May; 205(1):82-91. PubMed ID: 22252010 [TBL] [Abstract][Full Text] [Related]
9. Acute Effects of Sugars and Artificial Sweeteners on Small Intestinal Sugar Transport: A Study Using CaCo-2 Cells As an In Vitro Model of the Human Enterocyte. O'Brien P; Corpe CP PLoS One; 2016; 11(12):e0167785. PubMed ID: 27992462 [TBL] [Abstract][Full Text] [Related]
10. Cardiotrophin-1 decreases intestinal sugar uptake in mice and in Caco-2 cells. López-Yoldi M; Castilla-Madrigal R; Lostao MP; Barber A; Prieto J; Martínez JA; Bustos M; Moreno-Aliaga MJ Acta Physiol (Oxf); 2016 Jul; 217(3):217-26. PubMed ID: 26972986 [TBL] [Abstract][Full Text] [Related]
11. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. Helliwell PA; Richardson M; Affleck J; Kellett GL Biochem J; 2000 Aug; 350 Pt 1(Pt 1):149-54. PubMed ID: 10926838 [TBL] [Abstract][Full Text] [Related]
13. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice. Gouyon F; Caillaud L; Carriere V; Klein C; Dalet V; Citadelle D; Kellett GL; Thorens B; Leturque A; Brot-Laroche E J Physiol; 2003 Nov; 552(Pt 3):823-32. PubMed ID: 12937289 [TBL] [Abstract][Full Text] [Related]
14. Protein kinases, TNF-{alpha}, and proteasome contribute in the inhibition of fructose intestinal transport by sepsis in vivo. García-Herrera J; Marca MC; Brot-Laroche E; Guillén N; Acin S; Navarro MA; Osada J; Rodríguez-Yoldi MJ Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G155-64. PubMed ID: 17962360 [TBL] [Abstract][Full Text] [Related]
15. Regulation of GLUT5, GLUT2 and intestinal brush-border fructose absorption by the extracellular signal-regulated kinase, p38 mitogen-activated kinase and phosphatidylinositol 3-kinase intracellular signalling pathways: implications for adaptation to diabetes. Helliwell PA; Richardson M; Affleck J; Kellett GL Biochem J; 2000 Aug; 350 Pt 1(Pt 1):163-9. PubMed ID: 10926840 [TBL] [Abstract][Full Text] [Related]
16. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Gauer JS; Tumova S; Lippiat JD; Kerimi A; Williamson G Biochem Pharmacol; 2018 Jun; 152():11-20. PubMed ID: 29548810 [TBL] [Abstract][Full Text] [Related]
17. Interleukin-1beta reduces galactose transport in intestinal epithelial cells in a NF-kB and protein kinase C-dependent manner. Viñuales C; Gascón S; Barranquero C; Osada J; Rodríguez-Yoldi MJ Vet Immunol Immunopathol; 2013 Sep; 155(3):171-81. PubMed ID: 23886446 [TBL] [Abstract][Full Text] [Related]
18. Dietary fructose enhances intestinal fructose transport and GLUT5 expression in weaning rats. Shu R; David ES; Ferraris RP Am J Physiol; 1997 Mar; 272(3 Pt 1):G446-53. PubMed ID: 9124564 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. Kwon O; Eck P; Chen S; Corpe CP; Lee JH; Kruhlak M; Levine M FASEB J; 2007 Feb; 21(2):366-77. PubMed ID: 17172639 [TBL] [Abstract][Full Text] [Related]
20. Suppressive effect of nobiletin and epicatechin gallate on fructose uptake in human intestinal epithelial Caco-2 cells. Satsu H; Awara S; Unno T; Shimizu M Biosci Biotechnol Biochem; 2018 Apr; 82(4):636-646. PubMed ID: 29191128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]