BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 2391006)

  • 21. Regulatory punctuated equilibrium and convergence in the evolution of developmental pathways in direct-developing sea urchins.
    Raff EC; Popodi EM; Kauffman JS; Sly BJ; Turner FR; Morris VB; Raff RA
    Evol Dev; 2003; 5(5):478-93. PubMed ID: 12950627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early development of the feeding larva of the sea urchin Heliocidaris tuberculata: role of the small micromeres.
    Morris VB; Kable E; Koop D; Cisternas P; Byrne M
    Dev Genes Evol; 2019 Jan; 229(1):1-12. PubMed ID: 30446824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From larval bodies to adult body plans: patterning the development of the presumptive adult ectoderm in the sea urchin larva.
    Minsuk SB; Andrews ME; Raff RA
    Dev Genes Evol; 2005 Aug; 215(8):383-92. PubMed ID: 15834585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-option and dissociation in larval origins and evolution: the sea urchin larval gut.
    Love AC; Lee AE; Andrews ME; Raff RA
    Evol Dev; 2008; 10(1):74-88. PubMed ID: 18184359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Major regulatory factors in the evolution of development: the roles of goosecoid and Msx in the evolution of the direct-developing sea urchin Heliocidaris erythrogramma.
    Wilson KA; Andrews ME; Rudolf Turner F; Raff RA
    Evol Dev; 2005; 7(5):416-28. PubMed ID: 16174035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lineage and fate of each blastomere of the eight-cell sea urchin embryo.
    Cameron RA; Hough-Evans BR; Britten RJ; Davidson EH
    Genes Dev; 1987 Mar; 1(1):75-85. PubMed ID: 2448185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct-developing sea urchins and the evolutionary reorganization of early development.
    Raff RA
    Bioessays; 1992 Apr; 14(4):211-8. PubMed ID: 1596270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive evolution of bindin in the genus Heliocidaris is correlated with the shift to direct development.
    Zigler KS; Raff EC; Popodi E; Raff RA; Lessios HA
    Evolution; 2003 Oct; 57(10):2293-302. PubMed ID: 14628917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm.
    Love AC; Andrews ME; Raff RA
    Evol Dev; 2007; 9(1):51-68. PubMed ID: 17227366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos.
    Henry JJ; Amemiya S; Wray GA; Raff RA
    Dev Biol; 1989 Nov; 136(1):140-53. PubMed ID: 2806717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo.
    Kominami T; Akagawa M; Takata H
    Dev Growth Differ; 2006 Feb; 48(2):101-15. PubMed ID: 16512854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Establishment of embryonic axes in larvae of the starfish, Asterina pectinifera.
    Kominami T
    J Embryol Exp Morphol; 1983 Jun; 75():87-100. PubMed ID: 6886618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphological evolution in sea urchin development: hybrids provide insights into the pace of evolution.
    Byrne M; Voltzow J
    Bioessays; 2004 Apr; 26(4):343-7. PubMed ID: 15057932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Timing of early developmental events in embryos of a tropical sea urchin Echinometra mathaei.
    Kominami T; Takata H
    Zoolog Sci; 2003 May; 20(5):617-26. PubMed ID: 12777832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specification process of animal plate in the sea urchin embryo.
    Sasaki H; Kominami T
    Dev Growth Differ; 2008 Sep; 50(7):595-606. PubMed ID: 19238730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and evolution of CyI cytoplasmic actin-encoding genes in the indirect- and direct-developing sea urchins Heliocidaris tuberculata and Heliocidaris erythrogramma.
    Hahn JH; Kissinger JC; Raff RA
    Gene; 1995 Feb; 153(2):219-24. PubMed ID: 7875592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tinkering: new embryos from old--rapidly and cheaply.
    Raff RA; Raff EC
    Novartis Found Symp; 2007; 284():35-45; discussion 45-54, 110-5. PubMed ID: 17710846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maternal factors and the evolution of developmental mode: evolution of oogenesis in Heliocidaris erythrogramma.
    Byrne M; Villinski JT; Cisternas P; Siegel RK; Popodi E; Raff RA
    Dev Genes Evol; 1999 May; 209(5):275-83. PubMed ID: 11252180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of the fibropellin gene family and patterns of fibropellin gene expression in sea urchin phylogeny.
    Bisgrove BW; Andrews ME; Raff RA
    J Mol Evol; 1995 Jul; 41(1):34-45. PubMed ID: 7608987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.