BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23910246)

  • 1. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation.
    Innocenzi V; De Michelis I; Ferella F; Beolchini F; Kopacek B; Vegliò F
    Waste Manag; 2013 Nov; 33(11):2364-71. PubMed ID: 23910246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of yttrium from cathode ray tubes and lamps' fluorescent powders: experimental results and economic simulation.
    Innocenzi V; De Michelis I; Ferella F; Vegliò F
    Waste Manag; 2013 Nov; 33(11):2390-6. PubMed ID: 23831004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.
    De Michelis I; Ferella F; Varelli EF; Vegliò F
    Waste Manag; 2011 Dec; 31(12):2559-68. PubMed ID: 21840197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental burdens in the management of end-of-life cathode ray tubes.
    Rocchetti L; Beolchini F
    Waste Manag; 2014 Feb; 34(2):468-74. PubMed ID: 24238800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant.
    Rocchetti L; Vegliò F; Kopacek B; Beolchini F
    Environ Sci Technol; 2013 Feb; 47(3):1581-8. PubMed ID: 23323842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of lead recovery efficiency from waste CRT funnel glass by chlorinating volatilization process.
    Erzat A; Zhang FS
    Environ Technol; 2014; 35(21-24):2774-80. PubMed ID: 25176480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure to hazardous substances in Cathode Ray Tube (CRT) recycling sites in France.
    Lecler MT; Zimmermann F; Silvente E; Clerc F; Chollot A; Grosjean J
    Waste Manag; 2015 May; 39():226-35. PubMed ID: 25776743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass.
    Yuan W; Li J; Zhang Q; Saito F
    Environ Sci Technol; 2012 Apr; 46(7):4109-14. PubMed ID: 22385285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead recovery from scrap cathode ray tube funnel glass by hydrothermal sulphidisation.
    Yuan W; Meng W; Li J; Zhang C; Song Q; Bai J; Wang J; Li Y
    Waste Manag Res; 2015 Oct; 33(10):930-6. PubMed ID: 26264931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder with organic and inorganic ligands.
    Alvarado-Hernández L; Lapidus GT; González F
    Waste Manag; 2019 Jul; 95():53-58. PubMed ID: 31351639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal sulphides from wastewater: assessing the impact of supersaturation control strategies.
    Mokone TP; van Hille RP; Lewis AE
    Water Res; 2012 May; 46(7):2088-100. PubMed ID: 22336629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated process for the recovery of yttrium and europium from CRT phosphor waste.
    Forte F; Yurramendi L; Aldana JL; Onghena B; Binnemans K
    RSC Adv; 2019 Jan; 9(3):1378-1386. PubMed ID: 35518045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovering lead from cathode ray tube funnel glass by mechano-chemical extraction in alkaline solution.
    Zhang C; Wang J; Bai J; Guan J; Wu W; Guo C
    Waste Manag Res; 2013 Jul; 31(7):759-63. PubMed ID: 23592759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete.
    Sua-iam G; Makul N
    J Environ Manage; 2013 Oct; 128():931-40. PubMed ID: 23892134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis.
    Innocenzi V; Ippolito NM; De Michelis I; Medici F; Vegliò F
    J Environ Manage; 2016 Dec; 184(Pt 3):552-559. PubMed ID: 27789090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.
    Hu B; Hui W
    Waste Manag; 2017 Sep; 67():253-258. PubMed ID: 28587804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction-melting combined with a Na₂CO₃ flux recycling process for lead recovery from cathode ray tube funnel glass.
    Okada T; Yonezawa S
    Waste Manag; 2014 Aug; 34(8):1470-9. PubMed ID: 24816522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.
    Tsakiridis PE; Oustadakis P; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):8-14. PubMed ID: 20434263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of lead from cathode ray tube funnel glass by generating the sodium silicate.
    Hu B; Zhao S; Zhang S
    J Air Waste Manag Assoc; 2015 Jan; 65(1):106-14. PubMed ID: 25946963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the sulfide (S2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor.
    Veeken AH; Akoto L; Hulshoff Pol LW; Weijma J
    Water Res; 2003 Sep; 37(15):3709-17. PubMed ID: 12867339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.