These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 23910292)

  • 21. ZnO/CuO hetero-hierarchical nanotrees array: hydrothermal preparation and self-cleaning properties.
    Guo Z; Chen X; Li J; Liu JH; Huang XJ
    Langmuir; 2011 May; 27(10):6193-200. PubMed ID: 21491849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of Copper Oxide (CuO) Nanowires and Their Use for the Electrochemical Sensing of Dopamine.
    Sundar S; Venkatachalam G; Kwon SJ
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Room temperature synthesis of 2D CuO nanoleaves in aqueous solution.
    Zhao Y; Zhao J; Li Y; Ma D; Hou S; Li L; Hao X; Wang Z
    Nanotechnology; 2011 Mar; 22(11):115604. PubMed ID: 21297232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates.
    Zhang Qb; Xu D; Hung TF; Zhang K
    Nanotechnology; 2013 Feb; 24(6):065602. PubMed ID: 23340193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrothermal growth of CuO nanoleaf structures, and their mercuric ion detection application.
    Ibupoto ZH; Khun K; Willander M
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6711-7. PubMed ID: 25924321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles.
    Li Y; Zhang Q; Li J
    Talanta; 2010 Nov; 83(1):162-6. PubMed ID: 21035658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach.
    Fei X; Shao Z; Chen X
    Nanoscale; 2013 Sep; 5(17):7991-7. PubMed ID: 23863944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Self-Supported CuO/Cu Nanowire Electrode as Highly Efficient Sensor for COD Measurement.
    Huang X; Zhu Y; Yang W; Jiang A; Jin X; Zhang Y; Yan L; Zhang G; Liu Z
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31466335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potentiometric sensor using sub-micron Cu2O-doped RuO2 sensing electrode with improved antifouling resistance.
    Zhuiykov S; Kats E; Marney D
    Talanta; 2010 Jul; 82(2):502-7. PubMed ID: 20602927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth of copper sulfide dendrites and nanowires from elemental sulfur on TEM Cu grids under ambient conditions.
    Han Q; Sun S; Li J; Wang X
    Nanotechnology; 2011 Apr; 22(15):155607. PubMed ID: 21389583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bienzyme-functionalized monodispersed biocompatible cuprous oxide/chitosan nanocomposite platform for biomedical application.
    Singh J; Srivastava M; Roychoudhury A; Lee DW; Lee SH; Malhotra BD
    J Phys Chem B; 2013 Jan; 117(1):141-52. PubMed ID: 23270337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A robust enzymeless glucose sensor based on CuO nanoseed modified electrodes.
    Ahmad R; Tripathy N; Hahn YB; Umar A; Ibrahim AA; Kim SH
    Dalton Trans; 2015 Jul; 44(28):12488-92. PubMed ID: 26079109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Humidity and temperature sensing properties of copper oxide-Si-adhesive nanocomposite.
    Khan SB; Chani MT; Karimov KhS; Asiri AM; Bashir M; Tariq R
    Talanta; 2014 Mar; 120():443-9. PubMed ID: 24468394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires.
    Wang N; Han Y; Xu Y; Gao C; Cao X
    Anal Chem; 2015 Jan; 87(1):457-63. PubMed ID: 25418032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailoring CuO nanostructures for enhanced photocatalytic property.
    Liu J; Jin J; Deng Z; Huang SZ; Hu ZY; Wang L; Wang C; Chen LH; Li Y; Van Tendeloo G; Su BL
    J Colloid Interface Sci; 2012 Oct; 384(1):1-9. PubMed ID: 22818959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.
    Li C; Yamahara H; Lee Y; Tabata H; Delaunay JJ
    Nanotechnology; 2015 Jul; 26(30):305503. PubMed ID: 26159235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance.
    Hou L; Zhang C; Li L; Du C; Li X; Kang XF; Chen W
    Talanta; 2018 Oct; 188():41-49. PubMed ID: 30029395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes.
    Ahmad R; Vaseem M; Tripathy N; Hahn YB
    Anal Chem; 2013 Nov; 85(21):10448-54. PubMed ID: 24070377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis.
    Costa DO; Dixon SJ; Rizkalla AS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1490-9. PubMed ID: 22296410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection.
    Song MJ; Hwang SW; Whang D
    Talanta; 2010 Mar; 80(5):1648-52. PubMed ID: 20152391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.