BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23910343)

  • 1. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films.
    Holt I; Gestmann I; Wright AC
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4274-9. PubMed ID: 23910343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aligned, isotropic and patterned carbon nanotube substrates that control the growth and alignment of Chinese hamster ovary cells.
    Abdullah CA; Asanithi P; Brunner EW; Jurewicz I; Bo C; Azad CL; Ovalle-Robles R; Fang S; Lima MD; Lepro X; Collins S; Baughman RH; Sear RP; Dalton AB
    Nanotechnology; 2011 May; 22(20):205102. PubMed ID: 21444962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.
    Pint CL; Xu YQ; Pasquali M; Hauge RH
    ACS Nano; 2008 Sep; 2(9):1871-8. PubMed ID: 19206427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiwall carbon nanotube scaffolds for tissue engineering purposes.
    Abarrategi A; Gutiérrez MC; Moreno-Vicente C; Hortigüela MJ; Ramos V; López-Lacomba JL; Ferrer ML; del Monte F
    Biomaterials; 2008 Jan; 29(1):94-102. PubMed ID: 17928048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds.
    Lobo AO; Antunes EF; Palma MB; Pacheco-Soares C; Trava-Airoldi VJ; Corat EJ
    Cell Biol Int; 2010 Mar; 34(4):393-8. PubMed ID: 19947917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random networks of single-walled carbon nanotubes promote mesenchymal stem cell's proliferation and differentiation.
    Lee JH; Shim W; Choolakadavil Khalid N; Kang WS; Lee M; Kim HS; Choi J; Lee G; Kim JH
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1560-7. PubMed ID: 25546303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of horizontally aligned single-walled carbon nanotubes on anisotropically etched silicon substrate.
    Orofeo CM; Ago H; Ikuta T; Takahasi K; Tsuji M
    Nanoscale; 2010 Sep; 2(9):1708-14. PubMed ID: 20820701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering.
    Edwards SL; Church JS; Werkmeister JA; Ramshaw JA
    Biomaterials; 2009 Mar; 30(9):1725-31. PubMed ID: 19124155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation.
    Nayak TR; Jian L; Phua LC; Ho HK; Ren Y; Pastorin G
    ACS Nano; 2010 Dec; 4(12):7717-25. PubMed ID: 21117641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Templating of self-alignment patterns of anisotropic gold nanoparticles on ordered SWNT macrostructures.
    Dan B; Wingfield TB; Evans JS; Mirri F; Pint CL; Pasquali M; Smalyukh II
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3718-24. PubMed ID: 21854006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen.
    Ducati C; Koziol K; Friedrichs S; Yates TJ; Shaffer MS; Midgley PA; Windle AH
    Small; 2006 Jun; 2(6):774-84. PubMed ID: 17193122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application.
    Pan L; Pei X; He R; Wan Q; Wang J
    Colloids Surf B Biointerfaces; 2012 May; 93():226-34. PubMed ID: 22305638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes in scaffolds for tissue engineering.
    Edwards SL; Werkmeister JA; Ramshaw JA
    Expert Rev Med Devices; 2009 Sep; 6(5):499-505. PubMed ID: 19751122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films.
    Yang SB; Kong BS; Jung DH; Baek YK; Han CS; Oh SK; Jung HT
    Nanoscale; 2011 Apr; 3(4):1361-73. PubMed ID: 21359350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering.
    MacDonald RA; Laurenzi BF; Viswanathan G; Ajayan PM; Stegemann JP
    J Biomed Mater Res A; 2005 Sep; 74(3):489-96. PubMed ID: 15973695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials.
    Zhang L; Zhang H; Zhou R; Chen Z; Li Q; Fan S; Ge G; Liu R; Jiang K
    Nanotechnology; 2011 Sep; 22(38):385704. PubMed ID: 21878720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube guided formation of silicon oxide nanotrenches.
    Byon HR; Choi HC
    Nat Nanotechnol; 2007 Mar; 2(3):162-6. PubMed ID: 18654246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chemical and physical characteristics of single-walled carbon nanotube film impact on osteoblastic cell response.
    Tutak W; Chhowalla M; Sesti F
    Nanotechnology; 2010 Aug; 21(31):315102. PubMed ID: 20622299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [NEURONAL DIFFERENTIATION OF PC12 CELL LINE AND MURINE NEURAL STEM CELLS ON THE CARBON NANOTUBES FILMS].
    Posypanova GA; Gaiduchenko AI; Moskaleva EY; Fedorov GE
    Tsitologiia; 2016; 58(2):91-8. PubMed ID: 27228654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.