These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23910530)

  • 1. Implications of the biofuels policy mandate in Thailand on water: the case of bioethanol.
    Gheewala SH; Silalertruksa T; Nilsalab P; Mungkung R; Perret SR; Chaiyawannakarn N
    Bioresour Technol; 2013 Dec; 150():457-65. PubMed ID: 23910530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term bioethanol system and its implications on GHG emissions: a case study of Thailand.
    Silalertruksa T; Gheewala SH
    Environ Sci Technol; 2011 Jun; 45(11):4920-8. PubMed ID: 21528843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain.
    Zaky AS; Greetham D; Tucker GA; Du C
    Sci Rep; 2018 Aug; 8(1):12127. PubMed ID: 30108287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life-cycle energy and environmental analysis of bioethanol production from cassava in Thailand.
    Papong S; Malakul P
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S112-8. PubMed ID: 19766487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle environmental impacts of bioethanol production from sugarcane molasses in Iran.
    Farahani SS; Asoodar MA
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22547-22556. PubMed ID: 28804804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Very high gravity ethanol fermentation with cassava flour and sugarcane juice].
    Shen N; Zhang H; Wang Q; Qin Y; Liao S; Wang C; Huang R
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1269-75. PubMed ID: 21141118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle water footprints of nonfood biomass fuels in China.
    Zhang T; Xie X; Huang Z
    Environ Sci Technol; 2014 Apr; 48(7):4137-44. PubMed ID: 24400620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and modeling of sustainable bioethanol supply chain by minimizing the total ecological footprint in life cycle perspective.
    Ren J; Manzardo A; Toniolo S; Scipioni A; Tan S; Dong L; Gao S
    Bioresour Technol; 2013 Oct; 146():771-774. PubMed ID: 23978606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of ethanol production from sugarcane bagasse enzymatic hydrolysate concentrated with molasses under cell recycle.
    de Andrade RR; Maugeri Filho F; Maciel Filho R; da Costa AC
    Bioresour Technol; 2013 Feb; 130():351-9. PubMed ID: 23313680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production.
    Sindhu R; Kuttiraja M; Binod P; Janu KU; Sukumaran RK; Pandey A
    Bioresour Technol; 2011 Dec; 102(23):10915-21. PubMed ID: 22000965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The water footprint of sweeteners and bio-ethanol.
    Gerbens-Leenes W; Hoekstra AY
    Environ Int; 2012 Apr; 40():202-211. PubMed ID: 21802146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scientific challenges of bioethanol production in Brazil.
    Amorim HV; Lopes ML; de Castro Oliveira JV; Buckeridge MS; Goldman GH
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1267-75. PubMed ID: 21735264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental and economic analysis of bioethanol production from sugarcane molasses and agave juice.
    Parascanu MM; Sanchez N; Sandoval-Salas F; Carreto CM; Soreanu G; Sanchez-Silva L
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):64374-64393. PubMed ID: 34304359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-energy-food nexus of bioethanol in Pakistan: A life cycle approach evaluating footprint indicators and energy performance.
    Ghani HU; Silalertruksa T; Gheewala SH
    Sci Total Environ; 2019 Oct; 687():867-876. PubMed ID: 31412490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle water consumption and withdrawal requirements of ethanol from corn grain and residues.
    Mishra GS; Yeh S
    Environ Sci Technol; 2011 May; 45(10):4563-9. PubMed ID: 21520900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water, Energy, and Carbon Footprints of Bioethanol from the U.S. and Brazil.
    Mekonnen MM; Romanelli TL; Ray C; Hoekstra AY; Liska AJ; Neale CMU
    Environ Sci Technol; 2018 Dec; 52(24):14508-14518. PubMed ID: 30428259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fuel ethanol production from cassava feedstock].
    Huang R; Chen D; Wang Q; Shen N; Wei Y; Du L
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):888-91. PubMed ID: 20954388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production from dedicated energy crops and residues in Arkansas, USA.
    Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G
    Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.
    Fernández-López CL; Torrestiana-Sánchez B; Salgado-Cervantes MA; García PG; Aguilar-Uscanga MG
    Bioprocess Biosyst Eng; 2012 May; 35(4):605-14. PubMed ID: 21971607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of utilization patterns of cellulosic C5 sugar from cassava straw on bioethanol production through life cycle assessment.
    Lyu H; Yang S; Zhang J; Feng Y; Geng Z
    Bioresour Technol; 2021 Mar; 323():124586. PubMed ID: 33387712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.