These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23910530)

  • 21. Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants.
    Nitayavardhana S; Shrestha P; Rasmussen ML; Lamsal BP; van Leeuwen JH; Khanal SK
    Bioresour Technol; 2010 Apr; 101(8):2741-7. PubMed ID: 19939670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways.
    Chiu YW; Wu M
    Environ Sci Technol; 2012 Aug; 46(16):9155-62. PubMed ID: 22816524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Full chain energy analysis of fuel ethanol from cassava in Thailand.
    Nguyen TL; Gheewala SH; Garivait S
    Environ Sci Technol; 2007 Jun; 41(11):4135-42. PubMed ID: 17612202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of different extracts of coffee pulp for the production of bioethanol.
    Menezes EG; do Carmo JR; Menezes AG; Alves JG; Pimenta CJ; Queiroz F
    Appl Biochem Biotechnol; 2013 Jan; 169(2):673-87. PubMed ID: 23269634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water impacts of U.S. biofuels: Insights from an assessment combining economic and biophysical models.
    Teter J; Yeh S; Khanna M; Berndes G
    PLoS One; 2018; 13(9):e0204298. PubMed ID: 30265704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regional water footprints of potential biofuel production in China.
    Xie X; Zhang T; Wang L; Huang Z
    Biotechnol Biofuels; 2017; 10():95. PubMed ID: 28428820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water footprint of U.S. transportation fuels.
    Scown CD; Horvath A; McKone TE
    Environ Sci Technol; 2011 Apr; 45(7):2541-53. PubMed ID: 21405015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DesinFix TM 135 in fermentation process for bioethanol production.
    Barth D; de Souza Monteiro AR; da Costa MM; Virkajärvi I; Sacon V; Wilhelmsom A
    Braz J Microbiol; 2014; 45(1):323-5. PubMed ID: 24948951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of water footprint in sugar industries and bioethanol distilleries in two different water basins toward water sustainability.
    Fito J; Ahmed I; Nkambule TTI; Kefeni KK
    Int J Environ Sci Technol (Tehran); 2023; 20(3):2427-2440. PubMed ID: 35529587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implications of corn prices on water footprints of bioethanol.
    Suh K; Suh S; Smith T
    Bioresour Technol; 2011 Apr; 102(7):4747-54. PubMed ID: 21306890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass.
    Jung JH; Fouad WM; Vermerris W; Gallo M; Altpeter F
    Plant Biotechnol J; 2012 Dec; 10(9):1067-76. PubMed ID: 22924974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate change would increase the water intensity of irrigated corn ethanol.
    Dominguez-Faus R; Folberth C; Liu J; Jaffe AM; Alvarez PJ
    Environ Sci Technol; 2013 Jun; 47(11):6030-7. PubMed ID: 23701110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining the life cycle energy efficiency of six biofuel systems in China: a Data Envelopment Analysis.
    Ren J; Tan S; Dong L; Mazzi A; Scipioni A; Sovacool BK
    Bioresour Technol; 2014 Jun; 162():1-7. PubMed ID: 24727398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel full recycling process through two-stage anaerobic treatment of distillery wastewater for bioethanol production from cassava.
    Zhang QH; Lu X; Tang L; Mao ZG; Zhang JH; Zhang HJ; Sun FB
    J Hazard Mater; 2010 Jul; 179(1-3):635-41. PubMed ID: 20363557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries.
    Gnansounou E; Vaskan P; Pachón ER
    Bioresour Technol; 2015 Nov; 196():364-75. PubMed ID: 26255600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel strategy using an adsorbent-column chromatography for effective ethanol production from sugarcane or sugar beet molasses.
    Hatano K; Kikuchi S; Nakamura Y; Sakamoto H; Takigami M; Kojima Y
    Bioresour Technol; 2009 Oct; 100(20):4697-703. PubMed ID: 19467586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4.
    Thang VH; Kanda K; Kobayashi G
    Appl Biochem Biotechnol; 2010 May; 161(1-8):157-70. PubMed ID: 19771401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The unintended energy impacts of increased nitrate contamination from biofuels production.
    Twomey KM; Stillwell AS; Webber ME
    J Environ Monit; 2010 Jan; 12(1):218-24. PubMed ID: 20082016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous saccharification and continuous fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321.
    Moon SK; Kim SW; Choi GW
    J Biotechnol; 2012 Feb; 157(4):584-9. PubMed ID: 21723335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.