These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23910662)

  • 1. Spinal projection neurons control turning behaviors in zebrafish.
    Huang KH; Ahrens MB; Dunn TW; Engert F
    Curr Biol; 2013 Aug; 23(16):1566-73. PubMed ID: 23910662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture.
    Budick SA; O'Malley DM
    J Exp Biol; 2000 Sep; 203(Pt 17):2565-79. PubMed ID: 10934000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromodulatory Selection of Motor Neuron Recruitment Patterns in a Visuomotor Behavior Increases Speed.
    Jha U; Thirumalai V
    Curr Biol; 2020 Mar; 30(5):788-801.e3. PubMed ID: 32084402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prey capture by larval zebrafish: evidence for fine axial motor control.
    Borla MA; Palecek B; Budick S; O'Malley DM
    Brain Behav Evol; 2002; 60(4):207-29. PubMed ID: 12457080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Descending control of swim posture by a midbrain nucleus in zebrafish.
    Thiele TR; Donovan JC; Baier H
    Neuron; 2014 Aug; 83(3):679-91. PubMed ID: 25066082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-photon calcium imaging during fictive navigation in virtual environments.
    Ahrens MB; Huang KH; Narayan S; Mensh BD; Engert F
    Front Neural Circuits; 2013; 7():104. PubMed ID: 23761738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mirror movement-like defects in startle behavior of zebrafish dcc mutants are caused by aberrant midline guidance of identified descending hindbrain neurons.
    Jain RA; Bell H; Lim A; Chien CB; Granato M
    J Neurosci; 2014 Feb; 34(8):2898-909. PubMed ID: 24553931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural control and modulation of swimming speed in the larval zebrafish.
    Severi KE; Portugues R; Marques JC; O'Malley DM; Orger MB; Engert F
    Neuron; 2014 Aug; 83(3):692-707. PubMed ID: 25066084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efferent modulation of spontaneous lateral line activity during and after zebrafish motor commands.
    Lunsford ET; Skandalis DA; Liao JC
    J Neurophysiol; 2019 Dec; 122(6):2438-2448. PubMed ID: 31642405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of visually guided behavior by distinct populations of spinal projection neurons.
    Orger MB; Kampff AR; Severi KE; Bollmann JH; Engert F
    Nat Neurosci; 2008 Mar; 11(3):327-33. PubMed ID: 18264094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course of the development of motor behaviors in the zebrafish embryo.
    Saint-Amant L; Drapeau P
    J Neurobiol; 1998 Dec; 37(4):622-32. PubMed ID: 9858263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal Relationship of Ocular and Tail Segmental Movements Underlying Locomotor-Induced Gaze Stabilization During Undulatory Swimming in Larval Xenopus.
    Bacqué-Cazenave J; Courtand G; Beraneck M; Lambert FM; Combes D
    Front Neural Circuits; 2018; 12():95. PubMed ID: 30420798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brainstem neurons that command mammalian locomotor asymmetries.
    Cregg JM; Leiras R; Montalant A; Wanken P; Wickersham IR; Kiehn O
    Nat Neurosci; 2020 Jun; 23(6):730-740. PubMed ID: 32393896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a widespread brain stem escape network in larval zebrafish.
    Gahtan E; Sankrithi N; Campos JB; O'Malley DM
    J Neurophysiol; 2002 Jan; 87(1):608-14. PubMed ID: 11784774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Descending control of turning locomotor activity in larval lamprey: neurophysiology and computer modeling.
    McClellan AD; Hagevik A
    J Neurophysiol; 1997 Jul; 78(1):214-28. PubMed ID: 9242275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming.
    Kimura Y; Satou C; Fujioka S; Shoji W; Umeda K; Ishizuka T; Yawo H; Higashijima S
    Curr Biol; 2013 May; 23(10):843-9. PubMed ID: 23623549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual pathways for postural control and negative phototaxis in lamprey.
    Ullén F; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1997 Aug; 78(2):960-76. PubMed ID: 9307127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of a multisensory, multifunctional nucleus in the zebrafish midbrain during diverse locomotor behaviors.
    Sankrithi NS; O'Malley DM
    Neuroscience; 2010 Mar; 166(3):970-93. PubMed ID: 20074619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of hindbrain activity during active locomotion reveals inhibitory neurons involved in sensorimotor processing.
    Severi KE; Böhm UL; Wyart C
    Sci Rep; 2018 Sep; 8(1):13615. PubMed ID: 30206288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brainstem circuits encoding start, speed, and duration of swimming in adult zebrafish.
    Berg EM; Mrowka L; Bertuzzi M; Madrid D; Picton LD; El Manira A
    Neuron; 2023 Feb; 111(3):372-386.e4. PubMed ID: 36413988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.