These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 23910723)
1. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. Niu L; Li Z; Xu Y; Sun J; Hong W; Liu X; Wang J; Yang S ACS Appl Mater Interfaces; 2013 Aug; 5(16):8044-52. PubMed ID: 23910723 [TBL] [Abstract][Full Text] [Related]
3. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Luan F; Wang G; Ling Y; Lu X; Wang H; Tong Y; Liu XX; Li Y Nanoscale; 2013 Sep; 5(17):7984-90. PubMed ID: 23864110 [TBL] [Abstract][Full Text] [Related]
4. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Lin TW; Dai CS; Hung KC Sci Rep; 2014 Dec; 4():7274. PubMed ID: 25449978 [TBL] [Abstract][Full Text] [Related]
6. Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. Dai CS; Chien PY; Lin JY; Chou SW; Wu WK; Li PH; Wu KY; Lin TW ACS Appl Mater Interfaces; 2013 Nov; 5(22):12168-74. PubMed ID: 24191729 [TBL] [Abstract][Full Text] [Related]
7. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors. Chou TC; Doong RA; Hu CC; Zhang B; Su DS ChemSusChem; 2014 Mar; 7(3):841-7. PubMed ID: 24504702 [TBL] [Abstract][Full Text] [Related]
8. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Xie K; Li J; Lai Y; Zhang Z; Liu Y; Zhang G; Huang H Nanoscale; 2011 May; 3(5):2202-7. PubMed ID: 21455534 [TBL] [Abstract][Full Text] [Related]
11. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. Zhang X; Zhao Y; Xu C Nanoscale; 2014 Apr; 6(7):3638-46. PubMed ID: 24562602 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors. Yang C; Zhou M; Xu Q Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Hierarchical Ni Shao Y; Zhao Y; Li H; Xu C ACS Appl Mater Interfaces; 2016 Dec; 8(51):35368-35376. PubMed ID: 27991753 [TBL] [Abstract][Full Text] [Related]
14. Facile Synthesis of Hierarchical Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors. Ren X; Guo C; Xu L; Li T; Hou L; Wei Y ACS Appl Mater Interfaces; 2015 Sep; 7(36):19930-40. PubMed ID: 26301430 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes. Dubal DP; Chodankar NR; Vinu A; Kim DH; Gomez-Romero P ChemSusChem; 2017 Jul; 10(13):2742-2750. PubMed ID: 28523755 [TBL] [Abstract][Full Text] [Related]
18. Shape-Controlled Synthesis of Co2P Nanostructures and Their Application in Supercapacitors. Chen X; Cheng M; Chen D; Wang R ACS Appl Mater Interfaces; 2016 Feb; 8(6):3892-900. PubMed ID: 26812678 [TBL] [Abstract][Full Text] [Related]
19. Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors. Zuo L; Fan W; Zhang Y; Huang Y; Gao W; Liu T Nanoscale; 2017 Mar; 9(13):4445-4455. PubMed ID: 28304051 [TBL] [Abstract][Full Text] [Related]
20. Polylactic acid-based plastic activated NiAl Samikannu P; Madhan V; Chiang KY; George RK; Ravi R Environ Sci Pollut Res Int; 2024 Apr; 31(18):26606-26617. PubMed ID: 38451461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]