These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23911009)

  • 1. Influence of vortical flow structures on the glottal jet location in the supraglottal region.
    Kniesburges S; Hesselmann C; Becker S; Schlücker E; Döllinger M
    J Voice; 2013 Sep; 27(5):531-44. PubMed ID: 23911009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanisms of subharmonic tone generation in a synthetic larynx model.
    Kniesburges S; Lodermeyer A; Becker S; Traxdorf M; Döllinger M
    J Acoust Soc Am; 2016 Jun; 139(6):3182. PubMed ID: 27369142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-structure-acoustic interaction in a human voice model.
    Becker S; Kniesburges S; Müller S; Delgado A; Link G; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2009 Mar; 125(3):1351-61. PubMed ID: 19275292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.
    Kucinschi BR; Scherer RC; DeWitt KJ; Ng TT
    J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid-structure-acoustic interactions in an ex vivo porcine phonation model.
    Semmler M; Berry DA; Schützenberger A; Döllinger M
    J Acoust Soc Am; 2021 Mar; 149(3):1657. PubMed ID: 33765793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model.
    Drechsel JS; Thomson SL
    J Acoust Soc Am; 2008 Jun; 123(6):4434-45. PubMed ID: 18537394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
    Xue Q; Zheng X
    J Voice; 2017 May; 31(3):275-281. PubMed ID: 27178452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Glottal and supraglottal configuration during whispering].
    Fleischer S; Kothe C; Hess M
    Laryngorhinootologie; 2007 Apr; 86(4):271-5. PubMed ID: 17219333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Supraglottal Acoustics on Fluid-Structure Interaction During Human Voice Production.
    Bodaghi D; Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33399816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S; Murugappan S; Gutmark E
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the acoustical relevance of supraglottal flow structures to low-frequency voice production.
    Zhang Z; Neubauer J
    J Acoust Soc Am; 2010 Dec; 128(6):EL378-83. PubMed ID: 21218861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortical flow field during phonation in an excised canine larynx model.
    Khosla S; Muruguppan S; Gutmark E; Scherer R
    Ann Otol Rhinol Laryngol; 2007 Mar; 116(3):217-28. PubMed ID: 17419527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanisms of harmonic sound generation during phonation: A multi-modal measurement-based approach.
    Lodermeyer A; Bagheri E; Kniesburges S; Näger C; Probst J; Döllinger M; Becker S
    J Acoust Soc Am; 2021 Nov; 150(5):3485. PubMed ID: 34852620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
    Sadeghi H; Kniesburges S; Kaltenbacher M; Schützenberger A; Döllinger M
    J Voice; 2019 Jul; 33(4):385-400. PubMed ID: 29428274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds.
    Zhang C; Zhao W; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2147-54. PubMed ID: 12430826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear source-filter coupling due to the addition of a simplified vocal tract model for excised larynx experiments.
    Smith BL; Nemcek SP; Swinarski KA; Jiang JJ
    J Voice; 2013 May; 27(3):261-6. PubMed ID: 23490131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.