These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23911009)

  • 41. [The activity of the supraglottal sphincter during phonation].
    Martin F; Klingholz F; Weikert M
    Laryngol Rhinol Otol (Stuttg); 1983 Sep; 62(9):436-9. PubMed ID: 6633107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental validation of flow models for a rigid vocal tract replica.
    Van Hirtum A; Pelorson X; Estienne O; Bailliet H
    J Acoust Soc Am; 2011 Oct; 130(4):2128-38. PubMed ID: 21973367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preliminary results on the influence of engineered artificial mucus layer on phonation.
    Döllinger M; Gröhn F; Berry DA; Eysholdt U; Luegmair G
    J Speech Lang Hear Res; 2014 Apr; 57(2):S637-47. PubMed ID: 24686925
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model.
    Zhang Z; Neubauer J; Berry DA
    J Sound Vib; 2009 Apr; 322(1-2):299-313. PubMed ID: 20161071
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characteristics of a pulsating jet through a small modulated orifice, with application to voice production.
    Mongeau L; Franchek N; Coker CH; Kubli RA
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1121-33. PubMed ID: 9265759
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI.
    Schickhofer L; Malinen J; Mihaescu M
    J Acoust Soc Am; 2019 Apr; 145(4):2049. PubMed ID: 31046346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aerodynamic impact of the ventricular folds in computational larynx models.
    Sadeghi H; Döllinger M; Kaltenbacher M; Kniesburges S
    J Acoust Soc Am; 2019 Apr; 145(4):2376. PubMed ID: 31046372
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model.
    Suh J; Frankel SH
    J Acoust Soc Am; 2007 Jun; 121(6):3728-39. PubMed ID: 17552723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Material and shape optimization for multi-layered vocal fold models using transient loadings.
    Schmidt B; Leugering G; Stingl M; Hüttner B; Agaimy A; Döllinger M
    J Acoust Soc Am; 2013 Aug; 134(2):1261-70. PubMed ID: 23927124
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
    Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental analysis of the characteristics of artificial vocal folds.
    Misun V; Svancara P; Vasek M
    J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pressure-flow relationships in two models of the larynx having rectangular glottal shapes.
    Scherer RC; Titze IR; Curtis JF
    J Acoust Soc Am; 1983 Feb; 73(2):668-76. PubMed ID: 6841807
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation.
    Doellinger M; Berry DA
    J Voice; 2006 Sep; 20(3):401-13. PubMed ID: 16300925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Phonatory airflow in the supraglottal space].
    Müsebeck K; Rosenberg H
    Laryngol Rhinol Otol (Stuttg); 1983 May; 62(5):226-31. PubMed ID: 6865619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes.
    Zhang Z; Mongeau L; Frankel SH
    J Acoust Soc Am; 2002 Oct; 112(4):1652-63. PubMed ID: 12398470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.