These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23911009)

  • 61. Effect of wavy trachea walls on the oscillation onset pressure of silicone vocal folds.
    Häsner P; Prescher A; Birkholz P
    J Acoust Soc Am; 2021 Jan; 149(1):466. PubMed ID: 33514162
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Acoustical interaction between vibrating lips, downstream air column, and upstream airways in trombone performance.
    Fréour V; Scavone GP
    J Acoust Soc Am; 2013 Nov; 134(5):3887-98. PubMed ID: 24180797
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Instantaneous orifice discharge coefficient of a physical, driven model of the human larynx.
    Park JB; Mongeau L
    J Acoust Soc Am; 2007 Jan; 121(1):442-55. PubMed ID: 17297799
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Influence of Voice Training on Vocal Learners' Supraglottal Activities and Aerodynamic Evaluation.
    Wu P; Scholp A; Cai J; Xu X; Huang L; Zhuang P
    J Voice; 2024 May; 38(3):711-716. PubMed ID: 35022152
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of functional electric stimulation on phonation in an ex vivo aged ovine model.
    Jakubaß B; Peters G; Kniesburges S; Semmler M; Kirsch A; Gerstenberger C; Gugatschka M; Döllinger M
    J Acoust Soc Am; 2023 May; 153(5):2803. PubMed ID: 37154554
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A biorobotic model of the human larynx.
    Manti M; Cianchetti M; Nacci A; Ursino F; Laschi C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3623-6. PubMed ID: 26737077
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of the laryngeal jet using phase Doppler interferometry.
    Corcoran TE; Chigier N
    J Aerosol Med; 2000; 13(2):125-37. PubMed ID: 11010593
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A contribution to simulating a three-dimensional larynx model using the finite element method.
    Rosa Mde O; Pereira JC; Grellet M; Alwan A
    J Acoust Soc Am; 2003 Nov; 114(5):2893-905. PubMed ID: 14650023
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Velocity distributions in glottal models.
    Alipour F; Scherer R; Knowles J
    J Voice; 1996 Mar; 10(1):50-8. PubMed ID: 8653178
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In vitro experimental investigation of voice production.
    Kniesburges S; Thomson SL; Barney A; Triep M; Sidlof P; Horáčcek J; Brücker C; Becker S
    Curr Bioinform; 2011 Sep; 6(3):305-322. PubMed ID: 23181007
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fully-coupled aeroelastic simulation with fluid compressibility - For application to vocal fold vibration.
    Yang J; Wang X; Krane M; Zhang LT
    Comput Methods Appl Mech Eng; 2017 Mar; 315():584-606. PubMed ID: 29527067
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Aeroacoustic production of low-frequency unvoiced speech sounds.
    Krane MH
    J Acoust Soc Am; 2005 Jul; 118(1):410-27. PubMed ID: 16119362
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Direct numerical simulation of fluid-acoustic interactions in a recorder with tone holes.
    Yokoyama H; Miki A; Onitsuka H; Iida A
    J Acoust Soc Am; 2015 Aug; 138(2):858-73. PubMed ID: 26328702
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of glottal cross-section shape on phonation onset.
    Van Hirtum A; Wu B; Pelorson X; Lucero J
    J Acoust Soc Am; 2014 Aug; 136(2):853-8. PubMed ID: 25096118
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Three-dimensional simulation of square jets in cross-flow.
    Sau A; Sheu TW; Hwang RR; Yang WC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066302. PubMed ID: 15244721
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Generation of streamwise vortices in square sudden-expansion flows.
    Sau A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056307. PubMed ID: 15244932
    [TBL] [Abstract][Full Text] [Related]  

  • 77. ANALYSIS OF FLOW-STRUCTURE COUPLING IN A MECHANICAL MODEL OF THE VOCAL FOLDS AND THE SUBGLOTTAL SYSTEM.
    Howe MS; McGowan RS
    J Fluids Struct; 2009 Nov; 25(8):1299-1317. PubMed ID: 20161450
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Air flow during vocal fry phonation.
    McGlone RE
    J Speech Hear Res; 1967 Jun; 10(2):299-304. PubMed ID: 6082357
    [No Abstract]   [Full Text] [Related]  

  • 79. Computational aeroacoustics to identify sound sources in the generation of sibilant /s/.
    Pont A; Guasch O; Baiges J; Codina R; van Hirtum A
    Int J Numer Method Biomed Eng; 2019 Jan; 35(1):e3153. PubMed ID: 30203927
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Investigation of prescribed movement in fluid-structure interaction simulation for the human phonation process.
    Zörner S; Kaltenbacher M; Döllinger M
    Comput Fluids; 2013 Nov; 86(100):133-140. PubMed ID: 24204083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.