BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23911058)

  • 1. Effects of spill-treating agents on growth kinetics of marine microalgae.
    Rial D; Murado MA; Menduiña A; Fuciños P; González P; Mirón J; Vázquez JA
    J Hazard Mater; 2013 Dec; 263 Pt 2():374-81. PubMed ID: 23911058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of four spill-treating agents on bacterial growth and sea urchin embryogenesis.
    Rial D; Murado MA; Beiras R; Vázquez JA
    Chemosphere; 2014 Jun; 104():57-62. PubMed ID: 24268751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation Method Linking Dense Microalgal Culture Spectral Properties in the 400-750 nm Range to the Physiology of the Cells.
    Bellini S; Bendoula R; Le Floc'h E; Carré C; Mas S; Vidussi F; Fouilland E; Roger JM
    Appl Spectrosc; 2016 Jun; 70(6):1018-33. PubMed ID: 27091907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of spill-treating agents and oil to sea urchin embryos.
    Rial D; Vázquez JA; Murado MA
    Sci Total Environ; 2014 Feb; 472():302-8. PubMed ID: 24295747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane production from marine microalgae Isochrysis galbana.
    Santos NO; Oliveira SM; Alves LC; Cammarota MC
    Bioresour Technol; 2014 Apr; 157():60-7. PubMed ID: 24531148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuel toxicity on Isochrysis galbana and a coastal phytoplankton assemblage: growth rate vs. variable fluorescence.
    Pérez P; Fernández E; Beiras R
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):254-61. PubMed ID: 20060589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of CO2 enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana.
    Picardo MC; de Medeiros JL; Araújo Ode Q; Chaloub RM
    Bioresour Technol; 2013 Sep; 143():242-50. PubMed ID: 23800629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of TiO
    Hu J; Wang J; Liu S; Zhang Z; Zhang H; Cai X; Pan J; Liu J
    J Environ Sci (China); 2018 Apr; 66():208-215. PubMed ID: 29628089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecotoxicity and biodegradability of an alkyl ethoxysulphate surfactant in coastal waters.
    Sibila MA; Garrido MC; Perales JA; Quiroga JM
    Sci Total Environ; 2008 May; 394(2-3):265-74. PubMed ID: 18304608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui.
    Lai HT; Hou JH; Su CI; Chen CL
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):329-34. PubMed ID: 18439675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic toxicity of an environmentally relevant and equitoxic ratio of five metals to two Antarctic marine microalgae shows complex mixture interactivity.
    Koppel DJ; Adams MS; King CK; Jolley DF
    Environ Pollut; 2018 Nov; 242(Pt B):1319-1330. PubMed ID: 30121486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between uptake capacity and differential toxicity of the herbicide atrazine in selected microalgal species.
    Weiner JA; DeLorenzo ME; Fulton MH
    Aquat Toxicol; 2004 Jun; 68(2):121-8. PubMed ID: 15145222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory stimulation of oil-spill effects on marine phytoplankton.
    Hing LS; Ford T; Finch P; Crane M; Morritt D
    Aquat Toxicol; 2011 May; 103(1-2):32-7. PubMed ID: 21397585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of cellular density on determination of EC(50) in microalgal growth inhibition tests.
    Moreno-Garrido I; Lubián LM; Soares AM
    Ecotoxicol Environ Saf; 2000 Oct; 47(2):112-6. PubMed ID: 11023688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity and bioaccumulation of copper and lead in five marine microalgae.
    Debelius B; Forja JM; DelValls A; Lubián LM
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1503-13. PubMed ID: 19427695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acclimation of Isochrysis galbana Parke (Isochrysidaceae) for enhancing its tolerance and biodegradation to high-level phenol in seawater.
    Li H; Tan J; Sun T; Wang Y; Meng F
    Ecotoxicol Environ Saf; 2021 Jan; 207():111571. PubMed ID: 33254419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production.
    Roopnarain A; Gray VM; Sym SD
    Bioresour Technol; 2014 Mar; 156():408-11. PubMed ID: 24534441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuel oil effect on the population growth, species diversity and chlorophyll (a) content of freshwater microalgae.
    El-Dib MA; Abou-Waly HF; El-Naby AH
    Int J Environ Health Res; 2001 Jun; 11(2):189-97. PubMed ID: 11382351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicological effects of phenol on four marine microalgae.
    Duan W; Meng F; Lin Y; Wang G
    Environ Toxicol Pharmacol; 2017 Jun; 52():170-176. PubMed ID: 28432996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum.
    Santaeufemia S; Torres E; Mera R; Abalde J
    J Hazard Mater; 2016 Dec; 320():315-325. PubMed ID: 27565856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.