These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 23911175)
1. A composite model of glucagon-glucose dynamics for in silico testing of bihormonal glucose controllers. Herrero P; Georgiou P; Oliver N; Reddy M; Johnston D; Toumazou C J Diabetes Sci Technol; 2013 Jul; 7(4):941-51. PubMed ID: 23911175 [TBL] [Abstract][Full Text] [Related]
2. Systematically in silico comparison of unihormonal and bihormonal artificial pancreas systems. Gao X; Ning H; Wang Y Comput Math Methods Med; 2013; 2013():712496. PubMed ID: 24260042 [TBL] [Abstract][Full Text] [Related]
3. A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes. Herrero P; Bondia J; Oliver N; Georgiou P Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1474-1482. PubMed ID: 28929796 [TBL] [Abstract][Full Text] [Related]
4. Economic Model Predictive Control of Bihormonal Artificial Pancreas System Based on Switching Control and Dynamic R-parameter. Tang F; Wang Y J Diabetes Sci Technol; 2017 Nov; 11(6):1112-1123. PubMed ID: 28728434 [TBL] [Abstract][Full Text] [Related]
5. A feasibility study of bihormonal closed-loop blood glucose control using dual subcutaneous infusion of insulin and glucagon in ambulatory diabetic swine. El-Khatib FH; Jiang J; Damiano ER J Diabetes Sci Technol; 2009 Jul; 3(4):789-803. PubMed ID: 20144330 [TBL] [Abstract][Full Text] [Related]
6. Simulation environment to evaluate closed-loop insulin delivery systems in type 1 diabetes. Wilinska ME; Chassin LJ; Acerini CL; Allen JM; Dunger DB; Hovorka R J Diabetes Sci Technol; 2010 Jan; 4(1):132-44. PubMed ID: 20167177 [TBL] [Abstract][Full Text] [Related]
7. Identification of intraday metabolic profiles during closed-loop glucose control in individuals with type 1 diabetes. Kanderian SS; Weinzimer S; Voskanyan G; Steil GM J Diabetes Sci Technol; 2009 Sep; 3(5):1047-57. PubMed ID: 20144418 [TBL] [Abstract][Full Text] [Related]
8. Automated control of an adaptive bihormonal, dual-sensor artificial pancreas and evaluation during inpatient studies. Jacobs PG; El Youssef J; Castle J; Bakhtiani P; Branigan D; Breen M; Bauer D; Preiser N; Leonard G; Stonex T; Ward WK IEEE Trans Biomed Eng; 2014 Oct; 61(10):2569-81. PubMed ID: 24835122 [TBL] [Abstract][Full Text] [Related]
9. Artificial pancreas: model predictive control design from clinical experience. Toffanin C; Messori M; Di Palma F; De Nicolao G; Cobelli C; Magni L J Diabetes Sci Technol; 2013 Nov; 7(6):1470-83. PubMed ID: 24351173 [TBL] [Abstract][Full Text] [Related]
10. A bio-inspired glucose controller based on pancreatic β-cell physiology. Herrero P; Georgiou P; Oliver N; Johnston DG; Toumazou C J Diabetes Sci Technol; 2012 May; 6(3):606-16. PubMed ID: 22768892 [TBL] [Abstract][Full Text] [Related]
11. Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus. Zhao C; Dassau E; Jovanovič L; Zisser HC; Doyle FJ; Seborg DE J Diabetes Sci Technol; 2012 May; 6(3):617-33. PubMed ID: 22768893 [TBL] [Abstract][Full Text] [Related]
12. Blood glucose control in type 1 diabetes with a bihormonal bionic endocrine pancreas. Russell SJ; El-Khatib FH; Nathan DM; Magyar KL; Jiang J; Damiano ER Diabetes Care; 2012 Nov; 35(11):2148-55. PubMed ID: 22923666 [TBL] [Abstract][Full Text] [Related]
13. Effectiveness of artificial pancreas in the non-adult population: A systematic review and network meta-analysis. Karageorgiou V; Papaioannou TG; Bellos I; Alexandraki K; Tentolouris N; Stefanadis C; Chrousos GP; Tousoulis D Metabolism; 2019 Jan; 90():20-30. PubMed ID: 30321535 [TBL] [Abstract][Full Text] [Related]
14. Low-Order Nonlinear Animal Model of Glucose Dynamics for a Bihormonal Intraperitoneal Artificial Pancreas. Lopez-Zazueta C; Stavdahl O; Fougner AL IEEE Trans Biomed Eng; 2022 Mar; 69(3):1273-1280. PubMed ID: 34748476 [TBL] [Abstract][Full Text] [Related]
15. Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial. Magni L; Forgione M; Toffanin C; Dalla Man C; Kovatchev B; De Nicolao G; Cobelli C J Diabetes Sci Technol; 2009 Sep; 3(5):1091-8. PubMed ID: 20144422 [TBL] [Abstract][Full Text] [Related]
16. An improved PID switching control strategy for type 1 diabetes. Marchetti G; Barolo M; Jovanovic L; Zisser H; Seborg DE Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5041-4. PubMed ID: 17947128 [TBL] [Abstract][Full Text] [Related]
17. Glucose-responsive insulin and glucagon delivery (dual-hormone artificial pancreas) in adults with type 1 diabetes: a randomized crossover controlled trial. Haidar A; Legault L; Dallaire M; Alkhateeb A; Coriati A; Messier V; Cheng P; Millette M; Boulet B; Rabasa-Lhoret R CMAJ; 2013 Mar; 185(4):297-305. PubMed ID: 23359039 [TBL] [Abstract][Full Text] [Related]
18. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. Kovatchev BP; Breton M; Man CD; Cobelli C J Diabetes Sci Technol; 2009 Jan; 3(1):44-55. PubMed ID: 19444330 [TBL] [Abstract][Full Text] [Related]
19. Progress of artificial pancreas devices towards clinical use: the first outpatient studies. Russell SJ Curr Opin Endocrinol Diabetes Obes; 2015 Apr; 22(2):106-11. PubMed ID: 25692927 [TBL] [Abstract][Full Text] [Related]
20. A Novel Three-Compartmental Model for Artificial Pancreas: Development and Validation. Piemonte V; Capocelli M; De Santis L; Maurizi AR; Pozzilli P Artif Organs; 2017 Dec; 41(12):E326-E336. PubMed ID: 28853168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]