These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23911587)

  • 1. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis.
    Beste DJ; Nöh K; Niedenführ S; Mendum TA; Hawkins ND; Ward JL; Beale MH; Wiechert W; McFadden J
    Chem Biol; 2013 Aug; 20(8):1012-21. PubMed ID: 23911587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuberculosis: feeding the enemy.
    Garton NJ; O'Hare HM
    Chem Biol; 2013 Aug; 20(8):971-2. PubMed ID: 23973189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular Mycobacterium leprae Utilizes Host Glucose as a Carbon Source in Schwann Cells.
    Borah K; Girardi KDCV; Mendum TA; Lery LMS; Beste DJV; Lara FA; Pessolani MCV; McFadden J
    mBio; 2019 Dec; 10(6):. PubMed ID: 31848273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triosephosphate isomerase is dispensable in vitro yet essential for Mycobacterium tuberculosis to establish infection.
    Trujillo C; Blumenthal A; Marrero J; Rhee KY; Schnappinger D; Ehrt S
    mBio; 2014 Apr; 5(2):e00085. PubMed ID: 24757211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Mycobacterium tuberculosis Exploits Multiple Host Nitrogen Sources during Growth in Human Macrophages.
    Borah K; Beyß M; Theorell A; Wu H; Basu P; Mendum TA; Nӧh K; Beste DJV; McFadden J
    Cell Rep; 2019 Dec; 29(11):3580-3591.e4. PubMed ID: 31825837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of
    Gouzy A; Healy C; Black KA; Rhee KY; Ehrt S
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34341117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe.
    Gordon SV; Parish T
    Microbiology (Reading); 2018 Apr; 164(4):437-439. PubMed ID: 29465344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of
    Zimmermann M; Kogadeeva M; Gengenbacher M; McEwen G; Mollenkopf HJ; Zamboni N; Kaufmann SHE; Sauer U
    mSystems; 2017; 2(4):. PubMed ID: 28845460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis.
    BoseDasgupta S; Pieters J
    Semin Immunopathol; 2018 Nov; 40(6):577-591. PubMed ID: 30306257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage takeover and the host-bacilli interplay during tuberculosis.
    Hussain Bhat K; Mukhopadhyay S
    Future Microbiol; 2015; 10(5):853-72. PubMed ID: 26000654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence.
    Gouzy A; Poquet Y; Neyrolles O
    Nat Rev Microbiol; 2014 Nov; 12(11):729-37. PubMed ID: 25244084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Mycobacterium tuberculosis Enhancement of Macrophage P-Glycoprotein Expression and Activity on Intracellular Survival During Antituberculosis Drug Treatment.
    Wu Q; Hossfeld A; Gerberick A; Saljoughian N; Tiwari C; Mehra S; Ganesan LP; Wozniak DJ; Rajaram MVS
    J Infect Dis; 2019 Nov; 220(12):1989-1998. PubMed ID: 31412123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis.
    Bonde BK; Beste DJ; Laing E; Kierzek AM; McFadden J
    PLoS Comput Biol; 2011 Jun; 7(6):e1002060. PubMed ID: 21738454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic genes in THP‑1 derived macrophages infected with Mycobacterium tuberculosis H37Rv strain identified by integrating bioinformatics methods.
    Zhang YW; Lin Y; Yu HY; Tian RN; Li F
    Int J Mol Med; 2019 Oct; 44(4):1243-1254. PubMed ID: 31364746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction mechanism of Mycobacterium tuberculosis GroEL2 protein with macrophage Lectin-like, oxidized low-density lipoprotein receptor-1: An integrated computational and experimental study.
    Vinod V; Pushkaran AC; Kumar A; Mohan CG; Biswas R
    Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129758. PubMed ID: 33031906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection.
    Chandra P; Coullon H; Agarwal M; Goss CW; Philips JA
    J Clin Invest; 2022 Feb; 132(3):. PubMed ID: 35104812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biology of Mycobacterium cord factor and roles in pathogen-host interaction.
    Li C; Du Q; Deng W; Xie J
    Crit Rev Eukaryot Gene Expr; 2012; 22(4):289-97. PubMed ID: 23272799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection.
    Lovewell RR; Sassetti CM; VanderVen BC
    Curr Opin Microbiol; 2016 Feb; 29():30-6. PubMed ID: 26544033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting Host-Pathogen Interactions in TB Using Systems-Based Omic Approaches.
    Borah K; Xu Y; McFadden J
    Front Immunol; 2021; 12():762315. PubMed ID: 34795672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host-directed drug therapy for tuberculosis.
    Guler R; Brombacher F
    Nat Chem Biol; 2015 Oct; 11(10):748-51. PubMed ID: 26379013
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.