These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 23911725)
1. Non-classical mechanisms of transcriptional regulation by the vitamin D receptor: insights into calcium homeostasis, immune system regulation and cancer chemoprevention. Dimitrov V; Salehi-Tabar R; An BS; White JH J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt A():74-80. PubMed ID: 23911725 [TBL] [Abstract][Full Text] [Related]
2. Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. Jurutka PW; Bartik L; Whitfield GK; Mathern DR; Barthel TK; Gurevich M; Hsieh JC; Kaczmarska M; Haussler CA; Haussler MR J Bone Miner Res; 2007 Dec; 22 Suppl 2():V2-10. PubMed ID: 18290715 [TBL] [Abstract][Full Text] [Related]
3. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138 [TBL] [Abstract][Full Text] [Related]
4. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Wang TT; Tavera-Mendoza LE; Laperriere D; Libby E; MacLeod NB; Nagai Y; Bourdeau V; Konstorum A; Lallemant B; Zhang R; Mader S; White JH Mol Endocrinol; 2005 Nov; 19(11):2685-95. PubMed ID: 16002434 [TBL] [Abstract][Full Text] [Related]
5. 1alpha,25-dihydroxyvitamin D3 inducible transcription factor and its role in the vitamin D action. Nezbedova P; Brtko J Endocr Regul; 2004 Mar; 38(1):29-38. PubMed ID: 15147236 [TBL] [Abstract][Full Text] [Related]
6. The ASAP2 gene is a primary target of 1,25-dihydroxyvitamin D3 in human monocytes and macrophages. Seuter S; Ryynänen J; Carlberg C J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt A():12-8. PubMed ID: 23999061 [TBL] [Abstract][Full Text] [Related]
7. Eldecalcitol replaces endogenous calcitriol but does not fully compensate for its action in vivo. Saito H; Harada S J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt A():189-96. PubMed ID: 24291401 [TBL] [Abstract][Full Text] [Related]
8. Vitamin D and its receptor during late development. Goltzman D; Hendy GN; White JH Biochim Biophys Acta; 2015 Feb; 1849(2):171-80. PubMed ID: 24939836 [TBL] [Abstract][Full Text] [Related]
9. Integration of the NfkappaB p65 subunit into the vitamin D receptor transcriptional complex: identification of p65 domains that inhibit 1,25-dihydroxyvitamin D3-stimulated transcription. Lu X; Farmer P; Rubin J; Nanes MS J Cell Biochem; 2004 Jul; 92(4):833-48. PubMed ID: 15211579 [TBL] [Abstract][Full Text] [Related]
10. Altered gene expression profile in the kidney of vitamin D receptor knockout mice. Li X; Zheng W; Li YC J Cell Biochem; 2003 Jul; 89(4):709-19. PubMed ID: 12858337 [TBL] [Abstract][Full Text] [Related]
11. Molecular network of chromatin immunoprecipitation followed by deep sequencing-based vitamin D receptor target genes. Satoh J; Tabunoki H Mult Scler; 2013 Jul; 19(8):1035-45. PubMed ID: 23401126 [TBL] [Abstract][Full Text] [Related]
12. Identification of the functional vitamin D response elements in the human MDR1 gene. Saeki M; Kurose K; Tohkin M; Hasegawa R Biochem Pharmacol; 2008 Aug; 76(4):531-42. PubMed ID: 18602086 [TBL] [Abstract][Full Text] [Related]
13. Natural metabolites of 1alpha,25-dihydroxyvitamin D(3) retain biologic activity mediated through the vitamin D receptor. Harant H; Spinner D; Reddy GS; Lindley IJ J Cell Biochem; 2000 Apr; 78(1):112-20. PubMed ID: 10797570 [TBL] [Abstract][Full Text] [Related]
14. Vitamin D resistance. Bouillon R; Verstuyf A; Mathieu C; Van Cromphaut S; Masuyama R; Dehaes P; Carmeliet G Best Pract Res Clin Endocrinol Metab; 2006 Dec; 20(4):627-45. PubMed ID: 17161336 [TBL] [Abstract][Full Text] [Related]
15. 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization. Healy KD; Frahm MA; DeLuca HF Arch Biochem Biophys; 2005 Jan; 433(2):466-73. PubMed ID: 15581603 [TBL] [Abstract][Full Text] [Related]
16. Vitamin D and alternative splicing of RNA. Zhou R; Chun RF; Lisse TS; Garcia AJ; Xu J; Adams JS; Hewison M J Steroid Biochem Mol Biol; 2015 Apr; 148():310-7. PubMed ID: 25447737 [TBL] [Abstract][Full Text] [Related]
17. Enhancers located in the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Zella LA; Kim S; Shevde NK; Pike JW J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):435-9. PubMed ID: 17218097 [TBL] [Abstract][Full Text] [Related]
18. Response element and coactivator-mediated conformational change of the vitamin D(3) receptor permits sensitive interaction with agonists. Herdick M; Bury Y; Quack M; Uskokovic MR; Polly P; Carlberg C Mol Pharmacol; 2000 Jun; 57(6):1206-17. PubMed ID: 10825392 [TBL] [Abstract][Full Text] [Related]
19. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: genomic and non-genomic mechanisms. Haussler MR; Jurutka PW; Mizwicki M; Norman AW Best Pract Res Clin Endocrinol Metab; 2011 Aug; 25(4):543-59. PubMed ID: 21872797 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the human vitamin D3 receptor promoter in breast cancer cells is mediated through Sp1 sites. Wietzke JA; Ward EC; Schneider J; Welsh J Mol Cell Endocrinol; 2005 Jan; 230(1-2):59-68. PubMed ID: 15664452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]