These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23911969)

  • 21. Organometallic complexes of graphene: toward atomic spintronics using a graphene web.
    Avdoshenko SM; Ioffe IN; Cuniberti G; Dunsch L; Popov AA
    ACS Nano; 2011 Dec; 5(12):9939-49. PubMed ID: 22040265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zigzag graphene nanoribbons with saturated edges.
    Kudin KN
    ACS Nano; 2008 Mar; 2(3):516-22. PubMed ID: 19206578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation of the Goos-Hänchen shift with neutrons.
    de Haan VO; Plomp J; Rekveldt TM; Kraan WH; van Well AA; Dalgliesh RM; Langridge S
    Phys Rev Lett; 2010 Jan; 104(1):010401. PubMed ID: 20366352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure.
    Han L; Hu Z; Pan J; Huang T; Luo D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chair and twist-boat membranes in hydrogenated graphene.
    Samarakoon DK; Wang XQ
    ACS Nano; 2009 Dec; 3(12):4017-22. PubMed ID: 19947580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling.
    Boukhvalov DW; Son YW
    Nanoscale; 2012 Jan; 4(2):417-20. PubMed ID: 22113262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Planar Dirac electrons in magnetic quantum dots.
    Yang N; Zhu JL
    J Phys Condens Matter; 2012 May; 24(21):215303. PubMed ID: 22543306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor.
    Han L; Pan J; Wu C; Li K; Ding H; Ji Q; Yang M; Wang J; Zhang H; Huang T
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical Goos-Hänchen effect in uniaxially strained graphene.
    Jahani D; Akhavan O; Hayat A; Shah M
    J Opt Soc Am A Opt Image Sci Vis; 2023 Jan; 40(1):21-26. PubMed ID: 36607071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface doping and band gap tunability in hydrogenated graphene.
    Matis BR; Burgess JS; Bulat FA; Friedman AL; Houston BH; Baldwin JW
    ACS Nano; 2012 Jan; 6(1):17-22. PubMed ID: 22187951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable Goos-Hänchen shift from graphene ribbon array.
    Zeng X; Al-Amri M; Zubairy MS
    Opt Express; 2017 Oct; 25(20):23579-23588. PubMed ID: 29041309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.
    Pan S; Aksay IA
    ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-performance solution of the transport problem in a graphene armchair structure with a generic potential.
    Logoteta D; Marconcini P; Bonati C; Fagotti M; Macucci M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063309. PubMed ID: 25019914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of beryllium atoms and clusters both on graphene and in a bilayer of graphite investigated by DFT.
    Ferro Y; Fernandez N; Allouche A; Linsmeier C
    J Phys Condens Matter; 2013 Jan; 25(1):015002. PubMed ID: 23170758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene nanoring as a tunable source of polarized electrons.
    Munárriz J; Domínguez-Adame F; Orellana PA; Malyshev AV
    Nanotechnology; 2012 May; 23(20):205202. PubMed ID: 22543955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunnel anisotropic magnetoresistance in graphene with Rashba spin-orbit interaction.
    Niu ZP
    J Phys Condens Matter; 2011 Nov; 23(43):435302. PubMed ID: 21996709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain dependence of the heat transport properties of graphene nanoribbons.
    Yeo PS; Loh KP; Gan CK
    Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liquid crystals of carbon nanotubes and graphene.
    Zakri C; Blanc C; Grelet E; Zamora-Ledezma C; Puech N; Anglaret E; Poulin P
    Philos Trans A Math Phys Eng Sci; 2013 Apr; 371(1988):20120499. PubMed ID: 23459968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene.
    Zhao D; Ke S; Liu Q; Wang B; Lu P
    Opt Express; 2018 Feb; 26(3):2817-2828. PubMed ID: 29401817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.